Zukünftige Informationstechnologien: Neues Materialsystem ermöglicht lokale magnetische Monopole - Ausblick auf energieeffiziente Datenspeicher

Unter dem Eisen-Nickel-Film befindet sich ein supraleitender Punkt (gestricheltes Quadrat). X-PEEM-Messungen zeigen die magnetischen Domänen innerhalb der Eisen-Nickel-Legierung vor (links) und nach dem Einschreiben (rechts). In dieser Probe ist ein Monopol entstanden (Pfeile, rechts).

Unter dem Eisen-Nickel-Film befindet sich ein supraleitender Punkt (gestricheltes Quadrat). X-PEEM-Messungen zeigen die magnetischen Domänen innerhalb der Eisen-Nickel-Legierung vor (links) und nach dem Einschreiben (rechts). In dieser Probe ist ein Monopol entstanden (Pfeile, rechts). © HZB

Ein internationales Team hat an BESSY II einen neuen Weg gefunden, um exotische magnetische Muster wie Monopole oder Wirbel in einer dünnen magnetischen Schicht zu erzeugen. Dies eröffnet neue Möglichkeiten für schnelle und energieeffiziente Datenspeicher. Das neue Materialsystem besteht aus einer supraleitenden Mikrostruktur, die mit einem extrem dünnen ferromagnetischen Film beschichtet ist. Ein kurzfristig angelegtes äußeres Magnetfeld regt Ströme in den supraleitenden Bereichen an. Durch diese Ströme werden die gewünschten magnetischen Muster stabil in die ferromagnetische Dünnschicht eingeschrieben. Die Ergebnisse sind in Advanced Science publiziert.

Magnetische Muster wie Wirbel (Skyrmionen) oder Monopole eignen sich, um Daten schneller und mit weniger Energieeinsatz zu speichern. Bisher ist es jedoch schwierig, solche magnetischen Strukturen kontrolliert in einem Material zu erzeugen und zu manipulieren. Nun hat ein HZB-Team um Dr. Sergio Valencia in Kooperation mit einer Gruppe am Institut für Materialwissenschaften in Barcelona einen Weg aufgezeigt, um dies zu leisten.

Magnetische Dünnschicht auf supraleitenden Punkten

Die spanischen Kooperationspartner haben Mikrostrukturen hergestellt, indem sie auf eine Trägerschicht winzige Punkte aus dem Hochtemperatur-Supraleiter Yttrium-Barium-Kupferoxid (YBaCuO) aufbrachten.  Dabei stellten sie Proben mit jeweils unterschiedlich angeordneten Punkten her. Valencia und sein Team bedeckten diese Mikrostrukturen mit einem extrem dünnen Film aus einer weichmagnetischen Eisen-Nickel-Legierung.

Ströme erzeugen komplexe Felder

Die Experimente fanden bei 50 Grad Kelvin (minus 223 Grad Celsius) statt, so dass die YBaCuO-Punkte supraleitend waren. Senkrecht zur Probe legte das Team kurzfristig ein kleines äußeres Magnetfeld an. Dieses Magnetfeld erzeugt innerhalb der YBaCuO-Punkte supraleitende Ring-Ströme. Auch nach dem Abschalten des äußeren Magnetfelds laufen diese Ströme in den supraleitenden Punkten weiter und erzeugen ein komplexes magnetisches Feld, das sich direkt auf die darüberliegende magnetische Dünnschicht auswirkt.

Kartierung der magnetischen Domänen an BESSY II

Auf diese Weise lassen sich magnetische Muster in die Dünnschicht einschreiben, in denen zum Beispiel alle magnetischen Domänen aufeinander zu oder voneinander weg zeigen. Dies entspricht einem magnetischen Monopol. Das Team um Valencia konnte die magnetischen Domänen mit der Methode der Röntgen-Photo-Elektronen-Emissionsmikroskopie (X-PEEM und XMCD) an BESSY II kartieren. Das Verfahren bildet ausschließlich die Domänen innerhalb des magnetischen Eisen-Nickel-Films ab.

Monopole und Skyrmionen

Auch theoretische Simulationen belegen, dass die magnetischen Muster in der Dünnschicht über die Wechselwirkung mit den supraleitenden Bereichen erzeugt werden. Durch die Form der supraleitenden Bereiche und ihre Abstände zueinander lassen sich eine Vielzahl an exotischen magnetischen Mustern erzeugen, darunter auch stabile Wirbel, so genannte Skyrmionen. “Ich bin sehr optimistisch, dass sich diese Muster weiter miniaturisieren lassen. Damit könnte dieses Materialsystem ein Kandidat für künftige magnetische Datenspeicher werden. Außerdem gibt es jetzt schon Ideen dafür, wie es gelingen könnte, solche Materialsysteme auch bei Raumtemperatur zu nutzen“, sagt Valencia.

Die Arbeit "Encoding Magnetic States in Monopole-Like Configurations Using Superconducting Dots" ist in Advanced Science, Open Access, publiziert.

DOI: 10.1002/advs.201600207


arö

Das könnte Sie auch interessieren

  • Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Nachricht
    12.08.2022
    Alexander Gray kommt als Humboldt-Fellow ans HZB 
    Alexander Gray von der Temple University in Philadelphia, USA, arbeitet gemeinsam mit dem HZB-Physiker Florian Kronast an der Erforschung neuartiger 2D-Quantenmaterialien an BESSY II. Mit dem Stipendium der Alexander von Humboldt-Stiftung kann er diese Zusammenarbeit nun vertiefen. Bei BESSY II will er tiefenaufgelöste röntgenmikroskopische und -spektroskopische Methoden weiterentwickeln, um 2D-Quantenmaterialien und Bauelemente für neue Informationstechnologien zu untersuchen. 
  • Grüner Wasserstoff: Nanostrukturiertes Nickelsilizid glänzt als Katalysator
    Science Highlight
    11.08.2022
    Grüner Wasserstoff: Nanostrukturiertes Nickelsilizid glänzt als Katalysator
    Elektrische Energie aus Wind oder Sonne lässt sich als chemische Energie in Wasserstoff speichern, einem hervorragenden Kraftstoff und Energieträger. Voraussetzung dafür ist allerdings die effiziente Elektrolyse von Wasser mit kostengünstigen Katalysatoren. Nanostrukturiertes Nickelsilizid kann die Effizienz der Sauerstoffentwicklungsreaktion an der Anode deutlich steigern. Dies zeigte nun ein Team aus dem HZB, der Technischen Universität Berlin und der Freien Universität Berlin im Rahmen der Forschungsplattform CatLab unter anderem auch mit Messungen an BESSY II.
  • RBB Abendschau zu Besuch bei CatLab
    Nachricht
    01.08.2022
    RBB Abendschau zu Besuch bei CatLab
    CatLab bekam Besuch von der rbb Abendschau.
    Unter dem Titel "Der Weg weg vom Erdgas" wurde der Beitrag am Sonntag, 31. Juli in de rbb Abendschau ausgestrahlt und wird für 7 Tage in die rbb-Mediathek verfügbar.