HZB launches Helmholtz International Research School in collaboration with Israel

On 1st February 2018, the Helmholtz-Zentrum Berlin (HZB) has established the Helmholtz International Research School HI-SCORE, which will be oriented towards solar energy research. To accomplish this, HZB is collaborating with the Weizmann Institute in Rehovot, the Israeli Institute of Technology (Technion) in Haifa, and three Israeli universities as well as universities in Berlin and Potsdam.

The name “HI-SCORE” stands for “Hybrid Integrated Systems for Conversion of Solar Energy”. The research themes extend from novel solar cells based on metal-organic perovskites, to tandem solar cells, to complex systems of materials for generating solar fuels. These complex materials systems can convert the energy of sunlight to chemical energy so it can be easily stored in the form of fuel.

Renowned research institutes and universities are involved

Besides HZB, the other participants in the new research school include the Freie Universität Berlin, TU Berlin, Humboldt-Universität zu Berlin, and the University of Potsdam. Five renowned research institutes and universities in Israel are also participating: the Weizmann Institute, The Hebrew University of Jerusalem, the Israeli Institute of Technology (Technion), Ben-Gurion University, and Bar-Ilan University.

In total, more than 30 doctoral students will be able to carry out their research under HI-SCORE in both Israel and Berlin, and additionally benefit from the comprehensive selection of seminars and advanced training opportunities.

The Helmholtz Association is funding HI-SCORE as the Helmholtz International Research School beginning in 2018. The School will receive a total of 1.8 million Euros from the Initiative and Networking Fund of the President of the Helmholtz Association over a period of six years. In addition, the collaborating partners and HZB are making their own contributions, so that the total budget will be approximately 7 million Euros.

Great opportunity for PhD Students

“HZB is taking on even greater responsibility for the education of the next generation of scientists in the field of solar energy through the HI-SCORE International Research School", says Prof. Roel van de Krol, spokesperson of HI-SCORE. Four students are already working at HZB under a pilot project. Now about additional 30 places can be filled in Israel and Germany. “All of the HI-SCORE doctoral students will conduct research in both countries and be advised by staff at HZB as well as by the Israeli partners. This will enable them to acquire foreign experience and prepare themselves for an international career. HI-SCORE will also be working closely with the graduate schools at HZB and will thereby broaden what HZB can offer to students", according to van de Krol.

arö/sz


You might also be interested in

  • Clean cooking fuel with a great impact for southern Africa
    News
    19.04.2024
    Clean cooking fuel with a great impact for southern Africa
    Burning biomass for cooking causes harmful environmental and health issues. The German-South African GreenQUEST initiative is developing a clean household fuel. It aims to reduce climate-damaging CO2 emissions and to improve access to energy for households in sub-Saharan Africa.

  • Quantsol Summer School 2024 - Call for Application
    News
    17.04.2024
    Quantsol Summer School 2024 - Call for Application
    Registration for Quantsol is now open!

    The International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) will be held in September 1-8, 2024 in Hirschegg, Kleinwalsertal, Austria. The school is organised by the Helmholtz-Zentrum Berlin and the Technical University of Ilmenau. Applications can be submitted through the school’s homepage until Friday 31st of May 2024, 23.59h CET.

  • A simpler way to inorganic perovskite solar cells
    Science Highlight
    17.04.2024
    A simpler way to inorganic perovskite solar cells
    Inorganic perovskite solar cells made of CsPbI3 are stable over the long term and achieve good efficiencies. A team led by Prof. Antonio Abate has now analysed surfaces and interfaces of CsPbI3 films, produced under different conditions, at BESSY II. The results show that annealing in ambient air does not have an adverse effect on the optoelectronic properties of the semiconductor film, but actually results in fewer defects. This could further simplify the mass production of inorganic perovskite solar cells.