Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren

(a) Neutronen-Eigenspannungsmessung an einer Schweißprobe aus handelsüblichen Stahl, (b) Magnetfeldmessung, (c) Schweißnahtquerschliff.

(a) Neutronen-Eigenspannungsmessung an einer Schweißprobe aus handelsüblichen Stahl, (b) Magnetfeldmessung, (c) Schweißnahtquerschliff. © BAM

Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern.

Neutronenmessungen sind nach wie vor das Verfahren der Wahl, um vorhandene Eigenspannungen tief im Inneren von Materialien sehr exakt zu ermitteln. Hohe Unterschiede in Eigenspannungen sind für ein Material gleichbedeutend mit großem „Stress“, unter denen es sogar reißen kann. Allerdings stehen Neutronen nicht einfach so zur Verfügung, sondern erfordern Großgeräte wie die Berliner Neutronenquelle am HZB.

Ein Team des Fachbereichs 8.4 von der Bundesanstalt für Materialforschung (BAM) arbeitet daran, feinste Materialveränderung in ferromagnetischen Materialien frühzeitig zu identifizieren. Nun sind sie auf diesem Weg einen großen Schritt weiter gekommen. Die Forscher untersuchten dafür zunächst die sehr schwachen Magnetfelder von Schweißnähten aus einem ferromagnetischen Stahl. Mit Hilfe von speziellen Magnetfeldsensoren (sogenannten GMR-Sensoren; engl.: giant magneto resistance, dt.: Riesenmagnetwiderstand) gelang dies mit einer deutlich höheren Empfindlichkeit als sie zum Vermessen des Erdmagnetfelds notwendig ist und mit einer Ortsauflösung im zehntel Mikrometerbereich.

Im Anschluss identifizierten die Forscher die unterschiedlichen Materialeigenheiten der Schweißnähte, die beim Schweißen durch Erhitzen und Abkühlen des Materials entstehen. Dabei stellten sie überraschende Zusammenhänge fest: bereits geringfügige Veränderungen im Werkstoff, erzeugten Variationen im Magnetfeld. Die größten und deutlichsten Magnetfeldänderungen zeigten sich dabei in Bereichen mit homogener Mikrostruktur der Proben.

Mit Hilfe der Neutronenanalysen am HZB konnten die Forscher unter Leitung von Prof. Giovanni Bruno ihre Vermutung belegen, dass offenbar genau in diesen Bereichen stark unterschiedliche Eigenspannungsniveaus aufeinandertreffen.

Gegenwärtig sind die Forscher von der BAM auf der Suche, unter welchen Umständen Eigenspannungsgradienten solch hohe magnetische Streufelder erzeugen. Es lohnt sich, die Umstände noch genauer zu untersuchen. Damit rückt die Vision näher, mit Hilfe von Magnetfeldsensoren relevante Materialveränderungen bereits frühzeitig zu erkennen, bevor ein Riss überhaupt entsteht – und zwar preiswert und zerstörungsfrei.

Publiziert im Journal of Nondestructive Evaluation, 2018, Band 37: Influence of the microstructure on magnetic stray fields of low-carbon steel welds; R. Stegemann, S. Cabeza, M. Pelkner, V. Lyamkin, A. Pittner, D. Werner, R. Wimpory, M. Boin, M. Kreutzbruck, G. Bruno.

Robert Stegemann


Das könnte Sie auch interessieren

  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.
  • BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Science Highlight
    07.02.2024
    BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Fumarat, Maleat und Succinat sind organische Moleküle, die in der Koordinationschemie und teilweise auch in der Biochemie der Körperzellen eine Rolle spielen. Ein HZB-Team hat diese Moleküle nun an BESSY II mit Hilfe von RIXS und DFT-Simulationen analysiert. Die Ergebnisse geben nicht nur Aufschluss über die elektronischen Strukturen, sondern auch über die relative Stabilität dieser Moleküle. Dies könnte auch der Industrie dabei helfen, die Stabilität von Koordinationspolymeren zu optimieren.