Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren

(a) Neutronen-Eigenspannungsmessung an einer Schweißprobe aus handelsüblichen Stahl, (b) Magnetfeldmessung, (c) Schweißnahtquerschliff.

(a) Neutronen-Eigenspannungsmessung an einer Schweißprobe aus handelsüblichen Stahl, (b) Magnetfeldmessung, (c) Schweißnahtquerschliff. © BAM

Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern.

Neutronenmessungen sind nach wie vor das Verfahren der Wahl, um vorhandene Eigenspannungen tief im Inneren von Materialien sehr exakt zu ermitteln. Hohe Unterschiede in Eigenspannungen sind für ein Material gleichbedeutend mit großem „Stress“, unter denen es sogar reißen kann. Allerdings stehen Neutronen nicht einfach so zur Verfügung, sondern erfordern Großgeräte wie die Berliner Neutronenquelle am HZB.

Ein Team des Fachbereichs 8.4 von der Bundesanstalt für Materialforschung (BAM) arbeitet daran, feinste Materialveränderung in ferromagnetischen Materialien frühzeitig zu identifizieren. Nun sind sie auf diesem Weg einen großen Schritt weiter gekommen. Die Forscher untersuchten dafür zunächst die sehr schwachen Magnetfelder von Schweißnähten aus einem ferromagnetischen Stahl. Mit Hilfe von speziellen Magnetfeldsensoren (sogenannten GMR-Sensoren; engl.: giant magneto resistance, dt.: Riesenmagnetwiderstand) gelang dies mit einer deutlich höheren Empfindlichkeit als sie zum Vermessen des Erdmagnetfelds notwendig ist und mit einer Ortsauflösung im zehntel Mikrometerbereich.

Im Anschluss identifizierten die Forscher die unterschiedlichen Materialeigenheiten der Schweißnähte, die beim Schweißen durch Erhitzen und Abkühlen des Materials entstehen. Dabei stellten sie überraschende Zusammenhänge fest: bereits geringfügige Veränderungen im Werkstoff, erzeugten Variationen im Magnetfeld. Die größten und deutlichsten Magnetfeldänderungen zeigten sich dabei in Bereichen mit homogener Mikrostruktur der Proben.

Mit Hilfe der Neutronenanalysen am HZB konnten die Forscher unter Leitung von Prof. Giovanni Bruno ihre Vermutung belegen, dass offenbar genau in diesen Bereichen stark unterschiedliche Eigenspannungsniveaus aufeinandertreffen.

Gegenwärtig sind die Forscher von der BAM auf der Suche, unter welchen Umständen Eigenspannungsgradienten solch hohe magnetische Streufelder erzeugen. Es lohnt sich, die Umstände noch genauer zu untersuchen. Damit rückt die Vision näher, mit Hilfe von Magnetfeldsensoren relevante Materialveränderungen bereits frühzeitig zu erkennen, bevor ein Riss überhaupt entsteht – und zwar preiswert und zerstörungsfrei.

Publiziert im Journal of Nondestructive Evaluation, 2018, Band 37: Influence of the microstructure on magnetic stray fields of low-carbon steel welds; R. Stegemann, S. Cabeza, M. Pelkner, V. Lyamkin, A. Pittner, D. Werner, R. Wimpory, M. Boin, M. Kreutzbruck, G. Bruno.

Robert Stegemann


Das könnte Sie auch interessieren

  • Dynamische Messungen in Flüssigkeiten jetzt auch im Labor
    Science Highlight
    23.05.2024
    Dynamische Messungen in Flüssigkeiten jetzt auch im Labor
    Ein Team aus Berliner Forscher*innen hat ein Laborspektrometer entwickelt, um chemische Prozesse in Lösung zu analysieren – und das mit 500 ps Zeitauflösung. Dies ist nicht nur für die Forschung an molekularen Prozessen in der Biologie interessant, sondern auch für die Entwicklung von neuartigen Katalysatormaterialien. Bisher war dafür allerdings meist Synchrotronstrahlung erforderlich, wie sie nur an großen, modernen Röntgenquellen wie BESSY II zur Verfügung steht. Nun funktioniert das Verfahren mit einer Plasmalichtquelle im Labormaßstab.
  • Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Science Highlight
    21.05.2024
    Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Forscher*innen der Bundesanstalt für Materialforschung und -prüfung (BAM) und der Freien Universität Berlin haben erstmals den genauen Mechanismus des Simons-Prozesses entschlüsselt. Das interdisziplinäre Forschungsteam nutzte dafür die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin.

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.