Marcel Risch baut Arbeitsgruppe am HZB mit einem ERC-Starting-Grant auf

Dr. Marcel Risch kommt mit einem ERC-Starting-Grant an das HZB.

Dr. Marcel Risch kommt mit einem ERC-Starting-Grant an das HZB.

Marcel Risch mit seiner Arbeitsgruppe an der Georg-August-Universität Göttingen.

Marcel Risch mit seiner Arbeitsgruppe an der Georg-August-Universität Göttingen. © M.Risch

Das HZB bekommt Verstärkung bei der Erforschung von solaren Brennstoffen. Dr. Marcel Risch, der vor kurzem einen der begehrten ERC-Starting-Grants eingeworben hat, wechselt von der Georg-August-Universität Göttingen an das Helmholtz-Zentrum Berlin (HZB). Der Materialphysiker baut ab März 2019 eine eigene Arbeitsgruppe auf, um katalytische Materialien für die Wasserspaltung zu analysieren und zu optimieren.

Marcel Risch kennt das Helmholtz-Zentrum Berlin bereits als Nutzer, nun kommt er dauerhaft. Besonders attraktiv sind für ihn die Möglichkeiten, Materialsynthese, Elektrochemie und Röntgenspektroskopie zu verbinden, z. B. am „Energy Materials In Situ Laboratory“ (EMIL) an der Synchrotronquelle BESSY II. Risch forscht an katalytisch aktiven Materialien zur Aufspaltung von Wasser in Wasserstoff und Sauerstoff. Dadurch lässt sich Wasserstoff gewinnen, der eine klimaneutrale Alternative zu fossilen Brennstoffen ist.

Risch hat an der Freien Universität Berlin in 2011 promoviert. Anschließend ging der Physiker für vier Jahre als Postdoc an das weltbekannte Massachusetts Institute of Technology (MIT), Cambridge, USA. Seit 2016 forscht er am Institut für Materialphysik an der Georg-August-Universität Göttingen, zuletzt als Leiter einer Nachwuchsgruppe.

Sein Forschungsvorhaben, für das er kürzlich den „Starting Grant“ des European Research Council (ERC) erhielt, befasst sich mit dem Mechanismus der Sauerstoffentwicklung bei der katalytischen Aufspaltung von Wasser. Das Projekt trägt den Titel „ME4OER – Mechanism Engineering of the Oxygen Evolution Reaction“ und wird über den ERC-Starting-Grant mit 1,5 Millionen Euro für fünf Jahre gefördert.

Konkret wird Risch mit seinem Team synthetische Materialien mit ausgewählten Kristallstrukturen (Spinell- oder Perowskit-Struktur) untersuchen. Dabei konzentriert sich Risch auf die Klasse der Übergangsmetalloxide, die zwar sehr preisgünstig sind, aber nur eine geringe Effizienz bei der Sauerstoffevolutionsreaktion (OER) aufweisen. Diese geringe Effizienz begrenzt auch die Wasserstoffgewinnung. Durch detaillierte Kenntnis der Reaktionsprozesse will Risch die Effizienz solcher Katalysatoren um mehrere Größenordnungen steigern. Dafür müssen die katalytischen Reaktionen auf den Oberflächen im Detail analysiert werden. An EMIL kann er diese Oberflächen herstellen und in situ oder operando mit röntgenspektroskopischen Methoden analysieren.

arö


Das könnte Sie auch interessieren

  • Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Nachricht
    19.04.2024
    Sauberer Brennstoff zum Kochen für das südliche Afrika hat große Wirkung
    Das Verbrennen von Biomasse beim Kochen belastet Gesundheit und Umwelt. Die deutsch-südafrikanische Initiative GreenQUEST entwickelt einen sauberen Haushaltsbrennstoff. Er soll klimaschädliche CO2-Emissionen reduzieren und den Zugang zu Energie für Haushalte in afrikanischen Ländern südlich der Sahara verbessern.

  • Quantsol Summer School 2024 - jetzt bewerben!
    Nachricht
    17.04.2024
    Quantsol Summer School 2024 - jetzt bewerben!
    Vom 1. bis 8. September informiert die Quantsol Summer School 2024 über Grundlagen der solaren Energieumwandlung.

    Die International Summer School on Photovoltaics and New Concepts of Quantum Solar Energy Conversion (Quantsol) findet im September 2024 in Hirschegg, Kleinwalsertal, Österreich statt. Bewerbungen können bis zum 31. Mai 2024, 23:59 Uhr MEZ eingereicht werden. Organisiert wird die Schule vom Helmholtz-Zentrum Berlin und der Technischen Universität Ilmenau.

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.