Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

<p class="MsoCommentText">Die Fotomontage zeigt eine Probe aus reinem Niob (links) und eine Probe, die mit Nb<sub>3</sub>Sn beschichtet wurde (rechts).

Die Fotomontage zeigt eine Probe aus reinem Niob (links) und eine Probe, die mit Nb3Sn beschichtet wurde (rechts). © HZB

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt, aber auch bei Freien Elektronenlasern wie dem XFEL oder dem LCLS-II.

Beschichtung verspricht Einsparungen

Doch eine Beschichtung mit Niobzinn (Nb3Sn) könnte zu deutlichen Verbesserungen führen. Denn supraleitende Hochfrequenzkavitäten aus Niob müssen bei 2 Kelvin (-271 Grad Celsius) betrieben werden, was aufwändige Kryotechnik erfordert. Durch eine Beschichtung mit Nb3Sn könnten Kavitäten dagegen auch bei 4 statt 2 Kelvin betrieben werden und zudem möglicherweise höhere elektromagnetische Felder aushalten, ohne dass die Supraleitung zusammenbricht. In Zukunft könnte das bei großen Beschleunigern Millionen Euro in Bau- und Stromkosten sparen, da der Aufwand für die Kühlung deutlich geringer ist.

Experimente in USA, Kanada, Schweiz und HZB

Ein Team um Prof. Dr. Jens Knobloch, der das SRF-Institut am HZB leitet, hat nun in Zusammenarbeit mit Kollegen aus den USA, Kanada und der Schweiz Tests mit supraleitenden Proben durchgeführt, die an der Cornell University, USA, mit Nb3Sn beschichtet wurden. Die Experimente fanden am Paul-Scherrer-Institut, Schweiz, am TRIUMF, Kanada, und am HZB statt.

Beschichtete Probe hält mehr aus

„Wir haben die kritischen Magnetfeldstärken von supraleitenden Nb3Sn-Proben in statischen und Hochfrequenz-Feldern gemessen“, sagt Sebastian Keckert, Erstautor der Studie, der im Team von Knobloch promoviert. Durch die Kombination verschiedener Messverfahren konnten sie die theoretische Vorhersage bestätigen, dass das kritische Magnetfeld von Nb3Sn in Hochfrequenz-Feldern höher ist als das für statische Magnetfelder. Allerdings sollte das beschichtete Material im Hochfrequenz-Feld noch ein sehr viel höheres kritisches Magnetfeld aufweisen.

Somit haben die Tests auch gezeigt, dass der aktuell verwendete Beschichtungsprozess zur Herstellung von Nb3Sn weiterentwickelt werden könnte, um den theoretischen Werten noch näher zu kommen.

 

Die Arbeit wird auf dem Cover der Fachzeitschrift „Superconductor Science and Technology“ , (2019), angezeigt. Critical fields of Nb3Sn prepared for superconducting cavities; S. Keckert, T. Junginger, T. Buck, D. Hall, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen , T. Prokscha, Z. Salman, A. Suter and J. Knobloch

doi:10.1088/1361-6668/ab119e

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Nachricht
    04.02.2025
    HZB schafft erneut Weltrekord bei CIGS-Pero-Tandemsolarzellen
    Durch die Kombination von zwei Halbleiterdünnschichten zu einer Tandemsolarzelle sind hohe Wirkungsgrade bei minimalem ökologischem Fußabdruck erreichbar. Teams aus dem HZB und der Humboldt-Universität zu Berlin haben nun eine Tandemzelle aus CIGS und Perowskit vorgestellt, die mit einem Wirkungsgrad von 24,6 % den neuen Weltrekord hält. Dieser Wert wurde durch das Fraunhofer-Institut für Solare Energiesysteme ISE zertifiziert.
  • Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Science Highlight
    20.01.2025
    Nanoinseln auf Silizium mit schaltbaren topologischen Texturen
    Nanostrukturen mit spezifischen elektromagnetischen Texturen versprechen Anwendungsmöglichkeiten für die Nanoelektronik und zukünftige Informationstechnologien. Es ist jedoch sehr schwierig, solche Texturen zu kontrollieren. Nun hat ein Team am HZB eine bestimmte Klasse von Nanoinseln auf Silizium mit chiralen, wirbelnden polaren Texturen untersucht, die durch ein externes elektrisches Feld stabilisiert und sogar reversibel umgeschaltet werden können.
  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.