Nanopartikel in Lithium-Schwefel-Akkus mit Neutronen aufgespürt

Diese am HZB selbstentwickelte Messzelle ermöglicht es, die Batteriezelle in "operando" zu analysieren.

Diese am HZB selbstentwickelte Messzelle ermöglicht es, die Batteriezelle in "operando" zu analysieren. © S. Risse/HZB

Ein HZB-Team hat erstmals mit Hilfe von Neutronenexperimenten präzise analysiert, wie und wo sich Nanopartikel aus Lithiumsulfid und Schwefel im Lauf der Ladezyklen an den Batterie-Elektroden abscheiden. Die Ergebnisse können dazu beitragen, die Lebensdauer von Lithium-Schwefel-Akkus zu erhöhen.

Lithium-Schwefel-Akkus gelten als vielversprechende Kandidaten für die nächste Generation von Energiespeichern. Sie besitzen eine theoretische gravimetrische Energiedichte, die fünfmal höher ist als die der derzeit besten Lithium-Ionen-Akkumulatoren. Und sie funktionieren sogar bei Minusgraden bis -50 °C. Außerdem ist Schwefel preiswert und umweltfreundlich. Allerdings sinkt bislang mit jedem Lade-Entladezyklus die Kapazität stark ab, sodass solche Batterien noch nicht langlebig sind.

Kapazitätsverlust durch Reaktionsprodukte

Der Kapazitätsverlust wird durch komplizierte Reaktionsprozesse an den Elektroden im Inneren der Batteriezelle verursacht. Daher ist es besonders wichtig, die Abscheidung und das Auflösen des Lade- (Schwefel) und Entladeproduktes (Lithiumsulfid) genau zu verstehen. Während sich Schwefel makroskopisch abscheidet und sich daher mit bildgebenden Verfahren oder Röntgenbeugung sehr gut während des Zyklierens untersuchen lässt, ist Lithiumsulfid aufgrund einer Partikelgröße im sub-10-nm-Bereich nur schwer zu detektieren.

Neutronen zeigen, wo sich die Nanopartikel ablagern

Diesen Einblick liefern nun erstmals Untersuchungen an der Neutronenquelle BER II am HZB. Dr. Sebastian Risse hat mithilfe einer selbst entwickelten Messzelle Lithium-Schwefel-Batterien während der Lade- und Entladezyklen (operando) mit Neutronen durchleuchtet und zeitgleich weitere Messungen (Impedanzspektroskopie) durchgeführt.

Dadurch konnte er mit seinem Team das Auflösen und Abscheiden von Lithiumsulfid während zehn Entlade/Ladezyklen sehr genau analysieren. Da Neutronen stark mit Deuterium (schwerer Wasserstoff) wechselwirken, verwendeten die Forscher in der Batteriezelle ein deuteriertes Elektrolyt, um die beiden festen Produkte Schwefel und Lithiumsulfid sichtbar zu machen.

Überraschendes Ergebnis

Das Fazit der Forscher: „Wir sehen, dass die Lithiumsulfid- oder Schwefelabscheidungen nicht im Inneren der mikroporösen Kohlenstoffelektroden stattfinden, sondern auf der äußeren Oberfläche der Kohlenstofffasern“, sagt Risse. Diese Ergebnisse geben wertvolle Hinweise für die Entwicklung besserer Batterieelektroden.

Die Studie ist publiziert in ACS Nano, (2019): Operando Analysis of a Lithium/Sulfur Battery by Small Angle Neutron Scattering. Sebastian Risse, Eneli Härk, Ben Kent and Matthias Ballauff

DOI: http://dx.doi.org/10.1021/acsnano.9b03453

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Bernd Rech in den BR50 Vorstand gewählt
    Nachricht
    30.01.2026
    Bernd Rech in den BR50 Vorstand gewählt
    Der wissenschaftliche Geschäftsführer des Helmholtz-Zentrum Berlin ist das neue Gesicht hinter der Unit „Naturwissenschaften“ beim Berlin Research 50 (BR50). Nach der Wahl im Dezember 2025 fand am 22. Januar 2026 die konstituierende Sitzung des neuen BR50-Vorstands statt.  Mitglieder sind Michael Hintermüller (Weierstrass Institute, WIAS), Noa K. Ha (Deutsches Zentrum für Integrations- und Migrationsforschung, DeZIM), Volker Haucke (Leibniz-Forschungsinstitut für Molekulare Pharmakologie, FMP), Uta Bielfeldt (Deutsches Rheuma-Forschungszentrum Berlin, DRFZ) und Bernd Rech (HZB).
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.