Weltrekord für Perowskit-CIGS-Tandem-Solarzelle

Die Pero-CIGS-Tandemzelle erreicht den Rekordwirkungsgrad von 23,26 Prozent.

Die Pero-CIGS-Tandemzelle erreicht den Rekordwirkungsgrad von 23,26 Prozent. © HZB

Die Elektronenmikroskopieaufnahme zeigt eine AZO-Schicht (rötlich eingefärbt) zwischen dem Perowskit- und dem CIGS-Halbleiter. Die monomolekulare SAM-Schicht befindet sich auf der AZO-Schicht.

Die Elektronenmikroskopieaufnahme zeigt eine AZO-Schicht (rötlich eingefärbt) zwischen dem Perowskit- und dem CIGS-Halbleiter. Die monomolekulare SAM-Schicht befindet sich auf der AZO-Schicht. © HZB

Ein wichtiger Teil der Arbeiten fand im Helmholtz Innovation lab HySPRINT-Labor am HZB statt.

Ein wichtiger Teil der Arbeiten fand im Helmholtz Innovation lab HySPRINT-Labor am HZB statt. © Swantje Furtak

Ein Team um Prof. Steve Albrecht aus dem HZB stellt auf der weltgrößten internationalen Fachkonferenz EU PVSEC in Marseille am 11. September 2019 einen neuen Weltrekord für eine Tandem-Solarzelle vor. Die Solarzelle kombiniert die Halbleitermaterialien Perowskit und CIGS und erreicht damit einen zertifizierten Wirkungsgrad von 23,26 Prozent. Ein Grund für diesen Erfolg liegt in einer Zwischenschicht aus organischen Molekülen, die sich selbstorganisiert so anordnen, dass auch raue Halbleiter-Oberflächen lückenlos bedeckt werden. Dafür wurden zwei Patente eingereicht.

Perowskit-basierte Solarzellen haben in den letzten zehn Jahren unglaublich rasche Steigerungen des Wirkungsgrades gezeigt. Die Kombination von Perowskiten mit klassischen Halbleitermaterialien wie Silizium oder auch Kupfer-Indium-Gallium-Selenid (CIGS) verspricht preiswerte und leistungsstarke Solarmodule für die Zukunft. Allerdings kommt es an den Kontakten zwischen beiden Halbleitern zu Verlusten, die den Wirkungsgrad deutlich reduzieren.

Neuer Rekordwert

Der HZB-Physiker Prof. Steve Albrecht und sein Team haben nun neue Kontaktschichten etabliert, die diese Verluste deutlich reduzieren. Damit konnten sie eine monolithische Tandem-Solarzelle aus Perowskit und CIGS herstellen, die einen Wirkungsgrad von 23,26 Prozent erreicht. Dieser Wirkungsgrad ist offiziell zertifiziert und aktuell ein Weltrekord. Die Tandemzelle besitzt eine aktive Fläche von einem Quadratzentimeter und erreicht damit einen weiteren Meilenstein, denn Perowskit-CIGS-Tandemzellen waren bislang deutlich kleiner.

"Selbstorganisierte" Kontaktschicht

Die Kontaktschichten bestehen aus organischen Molekülen auf Carbazol-Basis mit Phosphonsäuregruppen, die sich selbstorganisiert zu monomolekularen Schichten anordnen (sogenannte „self-assembled monolayers“ oder SAMs). Diese SAMs haben sehr günstige elektro-optische Eigenschaften und die Selbstorganisation führt sogar auf rauen Halbleiterschichten zu lückenloser Bedeckung.

Einfach, robust und kompatibel

“Die SAMs bestechen durch ihre einfache und robuste Handhabung, die auch die industrielle Hochskalierung erlaubt. Außerdem sind sie kompatibel zu unterschiedlichsten Substrate und der Materialverbrauch ist extrem gering“, erklärt Amran Al-Ashouri, Doktorand in der Gruppe von Albrecht und Erstautor der Studie. Dies könne den Fortschritt hin zu sehr preiswerten PV-Technologien mit Perowskiten weiter beschleunigen. Die Gruppe hat dazu inzwischen zwei Patente beantragt und ist in Verhandlungen über eine Lizensierung.

Prof. Steve Albrecht leitet die Nachwuchsgruppe „Perowskit-Tandem-Solarzellen“, die vom BMBF gefördert wird. Die Arbeiten zu den Perowskit-Schichten fanden vorwiegend im Helmholtz-Innovation Lab HySPRINT statt und die SAMs wurden in enger Kollaboration mit der Kaunas University of Technology (Litauen) entwickelt, wo die Gruppe um Prof. Vytautas Getautis die Moleküle synthetisiert hat. Die CIGS-Schichten stammen aus der Gruppe von Dr. Christian Kaufmann, der am HZB die Hocheffizienz CIGS Aktivitäten leitet und durch das Projekt SpeedCIGS unterstützt wird, welches vom BMWi gefördert wird.

Präsentation auf der EU PVSEC

Albrecht wird die Arbeiten dazu am Mittwoch, den 11. September, auf einem Plenarvortrag der EU PVSEC in Marseille vorstellen. Die EU PVSEC ist die größte Fachkonferenz zu Photovoltaik und Solarenergie der Welt.  

Vortrag: Towards Highly Efficient Monolithic Tandem Devices with Perovskite Top Cells; S. Albrecht, A. Al-Ashouri, E. Köhnen, M. Jost, A. Morales, T. Bertram, L. Korte, B. Stannowski, C. Kaufmann, R. Schlatmann

Ort: EU PVSEC, Marseille, Frankreich vom 9.-13. September 2019, PLENARY SESSION 3CP.1

Zeit: Mittwoch, 11. September um 10:30 - 12:00 Perovskite, Organic, CIGS and III-V Multi-Junction Devices

 

 

 

 

 

arö


Das könnte Sie auch interessieren

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.
  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.