Mehr Informationen aus Mikroskopie-Abbildungen durch Rechenleistung

Am 27.11.2019 fand am HZB das Auftakttreffen des Helmholtz-Inkubator-Projekts Ptychography 4.0 statt. Sieben Helmholtz-Zentren wollen gemeinsam Methoden der Datenwissenschaft weiter entwickeln, um mehr Informationen aus Elektronen- und Röntgenmikroskopie zu gewinnen. Insbesondere geht es darum, mit „virtuellen Linsen“ Abbildungsfehler zu korrigieren und so das Auflösungsvermögen deutlich zu steigern.

Ptychography 4.0 gehört zu den Pilotprojekten des Inkubator-Förderprogramms im Bereich Information und Datenwissenschaften und wird aus dem Impuls- und Vernetzungsfonds des Präsidenten der Helmholtz-Gemeinschaft mit knapp 1,7 Millionen Euro gefördert. Die Helmholtz-Zentren beteiligen sich mit Eigenmitteln in gleicher Höhe.

„Mit der Ptychographie 4.0 arbeiten wir daran, die Auflösung in der Elektronenmikroskopie, aber auch in der Röntgenmikroskopie deutlich zu steigern, indem wir Abbildungsfehler rechnerisch korrigieren“, erläutert Dr. Markus Wollgarten, der am HZB das CoreLab für Korrelative Spektroskopie und Mikroskopie leitet. So wäre es zum Beispiel möglich, feinste Oberflächenstrukturen in Bakterien oder Viren extrem scharf darzustellen oder neue Materialien wie Graphen atomar genau abzubilden, ohne dass man auf kostspielige Korrektor-Optiken zurückgreifen muss.

Bei konventionellen Mikroskopieverfahren wird Licht (oder ein Elektronenstrahl) durch die Probe geschickt, ein Detektor misst dahinter die verbleibenden Intensitäten und man erhält so ein Bild der Probe. Dabei geht jedoch die wertvolle Information über die probenbedingte Phasenänderung der Strahlung verloren. Bei der Ptychographie 4.0 wird diese Information rechnerisch berücksichtigt und ausgewertet. Dies erfordert zwar Datenraten im Bereich von Gigabyte/Sekunde, erlaubt aber dann, die Probenstruktur mit großer Genauigkeit rechnerisch zu rekonstruieren. Abbildungsfehler des Mikroskops spielen dabei praktisch keine Rolle.

Die Kooperationspartner wollen nun diesen Ansatz weiter entwickeln und die Methode für den Routineeinsatz mit verschiedenen Strahlungsarten, wie beispielsweise Röntgenstrahlung, Elektronen oder XUV Licht, optimieren. Insbesondere soll die Bildrekonstruktion so stark beschleunigt werden, dass Abbildungen in Echtzeit möglich sind.

„Mit Ptychographie 4.0 umgehen wir limitierende Abbildungsfehler, so dass wir auf die sehr kostenintensiven physikalischen Korrektor-Optiken verzichten können – damit werden sich künftig wesentlich mehr Einrichtungen state-of-the-art Hochauflösungsmikroskopie leisten können“, betont Wollgarten.

Partner:
Deutsches Elektronen-Synchrotron (DESY)
Forschungszentrum Jülich (FZJ)
Helmholtz Institut Jena (GSI, HI-Jena)
Helmholtz Zentrum München (HMGU)
Helmholtz-Zentrum Berlin (HZB)
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Helmholtz-Zentrum für Infektionsforschung (HZI)

Koordination:
PD Dr. Wolfgang zu Castell
Helmholtz Zentrum München (HMGU)
castell@helmholtz-muenchen.de
Prof. Dr. Christian Schroer
Deutsches Elektronen-Synchrotron (DESY)
christian.schroer@desy.de

Am HZB sind neben Dr. Markus Wollgarten auch Prof. Dr. Gerd Schneider (Röntgenmikroskopie) sowie Ants Finke (IT-Abteilung) beteiligt.

arö

Das könnte Sie auch interessieren

  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.
  • Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Science Highlight
    30.11.2022
    Nanodiamanten als Photokatalysatoren mit Sonnenlicht aktivierbar
    Nanodiamant-Materialien besitzen Potenzial als preisgünstige Photokatalysatoren. Doch bisher benötigten solche Kohlenstoff-Nanopartikel energiereiches UV-Licht, um aktiv zu werden. Das DIACAT-Konsortium hat daher Variationen von Nanodiamant-Materialien hergestellt und analysiert. Die Arbeit zeigt: Wenn die Oberfläche der Nanopartikel mit ausreichend Wasserstoff-Atomen besetzt ist, reicht auch die schwächere Energie von Licht im sichtbaren Bereich für die Anregung aus. Photokatalysatoren auf Basis von Nanodiamanten könnten in Zukunft mit Sonnenlicht CO2 oder N2 in Kohlenwasserstoffe oder Ammoniak umwandeln.
  • Europäische Pilotlinie für innovative Tandem-Solarzellen
    Nachricht
    23.11.2022
    Europäische Pilotlinie für innovative Tandem-Solarzellen
    PEPPERONI ist ein vierjähriges Forschungs- und Innovationsprojekt, das im Rahmen von Horizon Europe kofinanziert und gemeinsam vom Helmholtz-Zentrum Berlin und Qcells koordiniert wird. Das Projekt wird dazu beitragen, die Markteinführung und Massenproduktion von Perowskit/Silizium-Tandem-Photovoltaik-Technologien voranzubringen.