Coronavirus SARS-CoV2: BESSY II-Daten beschleunigen die Suche nach Wirkstoffen

</p> <p>Schematische Darstellung der Coronavirus-Protease. Das Enzym kommt als Dimer bestehend aus zwei identischen Molek&uuml;len vor. Ein Teil des Dimers ist in Farbe dargestellt (gr&uuml;n und violett), der andere in grau. Das kleine Molek&uuml;l in gelb bindet an das aktive Zentrum der Protease und k&ouml;nnte als Blaupause f&uuml;r einen Hemmstoff dienen.

Schematische Darstellung der Coronavirus-Protease. Das Enzym kommt als Dimer bestehend aus zwei identischen Molekülen vor. Ein Teil des Dimers ist in Farbe dargestellt (grün und violett), der andere in grau. Das kleine Molekül in gelb bindet an das aktive Zentrum der Protease und könnte als Blaupause für einen Hemmstoff dienen. © H. Tabermann/HZB

Kurzfilm: Ein wichtiges Protein des SARS-CoV2-Virus ist an BESSY II entschlüsselt worden. Damit können schneller wirksame Gegenmittel entwickelt werden. © HG Medien/HZB

02:56

Ein Coronavirus hält die Welt in Atem. SARS-CoV-2  ist hochansteckend und kann schwere Lungenentzündung mit Atemnot (COVID-19) verursachen. Weltweit sucht die medizinische Forschung nach Möglichkeiten, wie man die Vermehrung der Viren mithilfe von Medikamenten verhindern kann. Ein Team der Universität Lübeck und am Helmholtz-Zentrum für Infektionsforschung (HZI) hat dafür einen vielversprechenden Ansatz gefunden. Mithilfe des hochintensiven Röntgenlichts der Berliner Synchrotronquelle BESSY II haben sie die dreidimensionale Architektur der viralen Hauptprotease von SARS-CoV-2 entschlüsselt. Die virale Hauptprotease ist an der Vermehrung des Virus beteiligt.

Weltweit forschen Teams daran, Wirkstoffe gegen SARS-CoV-2 zu entwickeln. Wichtig ist dafür die Strukturanalyse von Makromolekülen, die im Virus eine Funktion ausüben. Diese Funktion hängt eng mit der dreidimensionalen Architektur des Makromoleküls zusammen. Kennt man diese dreidimensionale Architektur, kann man gezielt Angriffspunkte für Wirkstoffe identifizieren.

Vermehrung der Viren stoppen

An der Vermehrung der Viren ist ein spezielles Protein beteiligt: die virale Hauptprotease (Mpro oder auch  3CLpro). Nun hat ein Team um Prof. Dr. Rolf Hilgenfeld, Universität Lübeck, die dreidimensionale Architektur der Hauptprotease von SARS-CoV-2 entschlüsselt. Die Forscher haben dafür das hochintensive Röntgenlicht der Anlage BESSY II des Helmholtz-Zentrum Berlin genutzt.

Fast-Track-Zugang zu BESSY II

„Speziell für solche hochaktuellen Fragestellungen ermöglichen wir einen Fast-Track-Zugang zu unseren Instrumenten“, sagt Dr. Manfred Weiss, der die Gruppe makromolekulare Kristallographie am HZB leitet. An den sogenannten MX-Instrumenten, die die Gruppe betreut, können winzigste Proteinkristalle mit hochbrillantem Röntgenlicht durchleuchtet werden. Die Bilder enthalten Informationen zur dreidimensionalen Architektur der Proteinmoleküle. Mit Hilfe von Computerprogrammen lassen sich die komplexe Gestalt des Proteinmoleküls sowie seine Elektronendichte berechnen.

Ergebnisse helfen bei der Wirkstoffentwicklung

Daraus ergeben sich nun konkrete Ansatzpunkte, um Wirkstoffe zu entwickeln. Diese könnten gezielt an Schwachstellen des Makromoleküls andocken und seine Funktion behindern. Rolf Hilgenfeld ist ein weltweit anerkannter Experte auf dem Gebiet der Virologie und hat bereits während der SARS-Pandemie 2002/2003 einen Hemmstoff gegen diese Virensorte entwickelt. 2016 gelang es ihm, ein Enzym des Zikavirus zu entschlüsseln.

 

Die Arbeit ist am 20. März  2020 in Science erschienen: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Linlin Zhang, Daizong Lin, Xinyuanyuan Sun, Ute Curth, Christian Drosten, Lucie Sauerhering, Stephan Becker, Katharina Rox, Rolf Hilgenfeld

DOI: 10.1126/science.abb3405


arö


Das könnte Sie auch interessieren

  • Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Nachricht
    21.05.2024
    Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Forscher*innen der Bundesanstalt für Materialforschung und -prüfung (BAM) und der Freien Universität Berlin haben erstmals den genauen Mechanismus des Simons-Prozesses entschlüsselt. Das interdisziplinäre Forschungsteam nutzte dafür die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin.

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.

  • IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Science Highlight
    25.04.2024
    IRIS-Beamline an BESSY II mit Nanomikroskopie erweitert
    Die Infrarot-Beamline IRIS am Speicherring BESSY II bietet nun eine vierte Option, um Materialien, Zellen und sogar Moleküle auf verschiedenen Längenskalen zu charakterisieren. Das Team hat die IRIS-Beamline mit einer Endstation für Nanospektroskopie und Nanoimaging erweitert, die räumliche Auflösungen bis unter 30 Nanometer ermöglicht. Das Instrument steht auch externen Nutzergruppen zur Verfügung.