Coronavirus SARS-CoV2: BESSY II-Daten beschleunigen die Suche nach Wirkstoffen

</p> <p>Schematische Darstellung der Coronavirus-Protease. Das Enzym kommt als Dimer bestehend aus zwei identischen Molek&uuml;len vor. Ein Teil des Dimers ist in Farbe dargestellt (gr&uuml;n und violett), der andere in grau. Das kleine Molek&uuml;l in gelb bindet an das aktive Zentrum der Protease und k&ouml;nnte als Blaupause f&uuml;r einen Hemmstoff dienen.

Schematische Darstellung der Coronavirus-Protease. Das Enzym kommt als Dimer bestehend aus zwei identischen Molekülen vor. Ein Teil des Dimers ist in Farbe dargestellt (grün und violett), der andere in grau. Das kleine Molekül in gelb bindet an das aktive Zentrum der Protease und könnte als Blaupause für einen Hemmstoff dienen. © H. Tabermann/HZB

Kurzfilm: Ein wichtiges Protein des SARS-CoV2-Virus ist an BESSY II entschlüsselt worden. Damit können schneller wirksame Gegenmittel entwickelt werden. © HG Medien/HZB

02:56

Ein Coronavirus hält die Welt in Atem. SARS-CoV-2  ist hochansteckend und kann schwere Lungenentzündung mit Atemnot (COVID-19) verursachen. Weltweit sucht die medizinische Forschung nach Möglichkeiten, wie man die Vermehrung der Viren mithilfe von Medikamenten verhindern kann. Ein Team der Universität Lübeck und am Helmholtz-Zentrum für Infektionsforschung (HZI) hat dafür einen vielversprechenden Ansatz gefunden. Mithilfe des hochintensiven Röntgenlichts der Berliner Synchrotronquelle BESSY II haben sie die dreidimensionale Architektur der viralen Hauptprotease von SARS-CoV-2 entschlüsselt. Die virale Hauptprotease ist an der Vermehrung des Virus beteiligt.

Weltweit forschen Teams daran, Wirkstoffe gegen SARS-CoV-2 zu entwickeln. Wichtig ist dafür die Strukturanalyse von Makromolekülen, die im Virus eine Funktion ausüben. Diese Funktion hängt eng mit der dreidimensionalen Architektur des Makromoleküls zusammen. Kennt man diese dreidimensionale Architektur, kann man gezielt Angriffspunkte für Wirkstoffe identifizieren.

Vermehrung der Viren stoppen

An der Vermehrung der Viren ist ein spezielles Protein beteiligt: die virale Hauptprotease (Mpro oder auch  3CLpro). Nun hat ein Team um Prof. Dr. Rolf Hilgenfeld, Universität Lübeck, die dreidimensionale Architektur der Hauptprotease von SARS-CoV-2 entschlüsselt. Die Forscher haben dafür das hochintensive Röntgenlicht der Anlage BESSY II des Helmholtz-Zentrum Berlin genutzt.

Fast-Track-Zugang zu BESSY II

„Speziell für solche hochaktuellen Fragestellungen ermöglichen wir einen Fast-Track-Zugang zu unseren Instrumenten“, sagt Dr. Manfred Weiss, der die Gruppe makromolekulare Kristallographie am HZB leitet. An den sogenannten MX-Instrumenten, die die Gruppe betreut, können winzigste Proteinkristalle mit hochbrillantem Röntgenlicht durchleuchtet werden. Die Bilder enthalten Informationen zur dreidimensionalen Architektur der Proteinmoleküle. Mit Hilfe von Computerprogrammen lassen sich die komplexe Gestalt des Proteinmoleküls sowie seine Elektronendichte berechnen.

Ergebnisse helfen bei der Wirkstoffentwicklung

Daraus ergeben sich nun konkrete Ansatzpunkte, um Wirkstoffe zu entwickeln. Diese könnten gezielt an Schwachstellen des Makromoleküls andocken und seine Funktion behindern. Rolf Hilgenfeld ist ein weltweit anerkannter Experte auf dem Gebiet der Virologie und hat bereits während der SARS-Pandemie 2002/2003 einen Hemmstoff gegen diese Virensorte entwickelt. 2016 gelang es ihm, ein Enzym des Zikavirus zu entschlüsseln.

 

Die Arbeit ist am 20. März  2020 in Science erschienen: Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Linlin Zhang, Daizong Lin, Xinyuanyuan Sun, Ute Curth, Christian Drosten, Lucie Sauerhering, Stephan Becker, Katharina Rox, Rolf Hilgenfeld

DOI: 10.1126/science.abb3405


arö


Das könnte Sie auch interessieren

  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.
  • Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Science Highlight
    03.04.2024
    Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Die Wechselwirkungen zwischen Phosporsäure und dem Platin-Katalysator in Hochtemperatur-PEM-Brennstoffzellen sind komplexer als bisher angenommen. Röntgen-Experimente an BESSY II in einem mittleren Energiebereich (tender x-rays) haben die vielfältigen Oxidationsprozesse an der Platin-Elektrolyt-Grenzfläche entschlüsselt. Die Ergebnisse zeigen auch, dass die Feuchtigkeit in der Brennstoffzelle diese Prozesse beeinflusst, so dass sich hier Möglichkeiten bieten, um Lebensdauer und Wirkungsgrad von Brennstoffzellen zu erhöhen. 
  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.