Auf dem Weg zu bleifreien und stabilen Perowskit-Solarzellen

Die Abbildung zeigt die Veränderungen in der Struktur von FASnI3:PEACl-Filmen während der Behandlung bei verschiedenen Temperaturen.

Die Abbildung zeigt die Veränderungen in der Struktur von FASnI3:PEACl-Filmen während der Behandlung bei verschiedenen Temperaturen. © Meng Li/HZB

Die besten Perowskit-Solarzellen schaffen zwar enorme Wirkungsgrade, enthalten aber giftiges Blei. Bleifreie Perowskit-Solarzellen erreichten bislang nur geringe Wirkungsgrade, die zudem schnell abnehmen. Eine neue Arbeit einer internationalen Kooperation zeigt nun, wie sich stabile Perowskit-Schichten herstellen lassen, die Zinn anstelle von Blei enthalten. Dabei schützen organische Verbindungen das Zinn vor Oxidation und sorgen für Stabilität.

Unter den neuen Materialien für Solarzellen gelten die Halogenidperowskite als besonders vielversprechend. Innerhalb weniger Jahre stieg der Wirkungsgrad solcher Perowskit-Solarzellen von einigen wenigen Prozent auf über 25 %. Leider enthalten die besten Perowskit-Solarzellen giftiges Blei, das eine Gefahr für die Umwelt darstellt. Es ist jedoch überraschend schwierig, das Blei durch weniger giftige Elemente zu ersetzen. Eine der besten Alternativen ist Zinn. Halogenidperowskite mit Zinn anstelle von Blei sollten ausgezeichnete optische Eigenschaften aufweisen, aber in der Praxis sind ihre Wirkungsgrade mittelmäßig und nehmen schnell ab. Und diese rasche "Alterung" ist ihr Hauptnachteil: Die Zinnkationen in der Perowskitstruktur reagieren sehr schnell mit Sauerstoff aus der Umgebung, so dass ihre Effizienz abnimmt.

Nun hat eine internationale Kooperation unter der Leitung von Antonio Abate, HZB, und Zhao-Kui Wang, Institut für funktionelle Nano- und weiche Materialien (FUNSOM), Soochow Universität, China, einen Durchbruch erzielt, der einen Weg zu ungiftigen Solarzellen auf Perowskitbasis eröffnet, die über einen langen Zeitraum stabile Leistung bieten. Sie verwenden ebenfalls Zinn anstelle von Blei, haben jedoch durch Einfügen organischer Gruppen in das Material eine zweidimensionale Struktur geschaffen, die zu so genannten 2D-Ruddlesden-Popper-Phasen führt.

"Wir verwenden Phenylethylammoniumchlorid (PEACl) als Zusatz zu den Perowskitschichten. Dann führen wir eine Wärmebehandlung durch, während die PEACl-Moleküle in die Perowskit-Schicht einwandern. Dies führt zu vertikal geordneten Stapeln von zweidimensionalen Perowskit-Kristallen", erklärt Erstautor Dr. Meng Li. Li ist Postdoc in der Gruppe von Abate und hat die enge Zusammenarbeit mit den chinesischen Partnern organisiert. In der Shanghai Synchrotron Radiation Facility (SSRF) konnten sie die Morphologie und die Kristalleigenschaften der Perowskitfilme nach verschiedenen Glühbehandlungen genau analysieren.

Die besten dieser bleifreien Perowskit-Solarzellen erreichten einen Wirkungsgrad von 9,1 Prozent und hohe Stabilitätswerte, sowohl unter Tagesbedingungen als auch im Dunkeln. Die PEACl-Moleküle reichern sich durch die Wärmebehandlung zwischen den kristallinen Perowskit-Lagen an und bilden eine Barriere, die verhindert, dass die Zinn-Kationen oxidieren. „Diese Arbeit ebnet den Weg für effizientere und stabilere bleifreie Perowskit-Solarzellen“ ist Abate überzeugt.

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Science Highlight
    01.07.2024
    Wertstoffe aus Abfall: Auf die richtigen Elektrolyte kommt es an
    Stellt man aus Biomasse Biodiesel her, fällt als Nebenprodukt Glycerin an. Bislang wird dieses Nebenprodukt jedoch wenig genutzt, obwohl es durch Oxidation in photoelektrochemischen Reaktoren (PEC) zu wertvolleren Chemikalien verarbeitet werden könnte. Der Grund dafür: geringe Effizienz und Selektivität. Nun hat ein Team um Dr. Marco Favaro vom Institut für Solare Brennstoffe am HZB den Einfluss der Elektrolyte auf die Effizienz der Glycerin-Oxidations-Reaktion in PEC-Reaktoren untersucht und Ergebnisse erhalten, die dabei helfen, effizientere und umweltfreundlichere Produktionsverfahren zu entwickeln.