Forscherteam liefert konkreten Ansatzpunkt, um die Leistung von CIGS-Solarzellen zu verbessern

</p> <p>Daniel Abou-Ras und sein Team ermitteln die mikroskopische Struktur einer sehr guten CIGS-D&uuml;nnschicht-Solarzelle (oben). Sie dient als Vorbild f&uuml;r eine Computersimulation (unten)

Daniel Abou-Ras und sein Team ermitteln die mikroskopische Struktur einer sehr guten CIGS-Dünnschicht-Solarzelle (oben). Sie dient als Vorbild für eine Computersimulation (unten) © HZB/M. Krause

Ein Forscherteam hat mithilfe von Elektronenmikroskopen und Computersimulationen ermittelt, warum es zu Verlusten in Dünnschichtsolarzellen kommt. Die Forschenden von der Martin-Luther-Universität Halle-Wittenberg, vom Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) und vom Helmholtz-Zentrum Berlin (HZB) geben konkrete Hinweise, wie sich der bereits hohe Wirkungsgrad von CIGS-Solarzellen verbessern lässt. Die Ergebnisse wurde in der Zeitschrift Nature Communication veröffentlicht.

Dünnschichtsolarzellen aus Kupfer-Indium-Gallium-Diselenid oder kurz CIGS glänzen schon längst mit Rekord-Wirkungsgraden von 23,4 Prozent und weiteren Vorteilen wie der Möglichkeit zur Produktion auf flexiblen Substraten, was mit herkömmlichen Solarzellen aus Silizium-Wafern nicht möglich ist. Dieser Wirkungsgrad lässt sich aber durchaus noch verbessern, weil beim Umwandeln von Sonnenlicht in elektrische Leistung einige Verluste auftreten. Nur müssten die Hersteller erst einmal wissen, wo diese Einbußen genau auftreten.

Korngrenzen sind entscheidend

Eine Antwort auf diese Frage hat jetzt das Team um HZB-Forscher Dr. Daniel Abou-Ras geliefert und erhärtet damit einen schon länger bestehenden Verdacht: Ein erheblicher Teil der Verluste passiert an den Grenzen zwischen den CIGS-Kristallen einer Dünnschicht-Solarzelle, wenn sich an diesen „Korngrenzen“ positive und negative elektrische Ladungen gegenseitig neutralisieren.

Diese Ladungen entstehen, wenn das Sonnenlicht auf ein Halbleitermaterial wie Silizium oder CIGS trifft. Die energiereiche Strahlung schlägt aus den Atomen dieses Halbleiters elektrisch negativ geladene Elektronen heraus, zurück bleiben positiv geladene Elektronenfehlstellen, die in der Fachsprache als „Löcher“ bezeichnet werden. Diese beweglichen, elektrischen Ladungen werden an Kontakten gesammelt und liefern dort die elektrische Leistung. Die wiederum hängt von zwei Faktoren ab: Je mehr Elektronen die Sonnenstrahlung im Halbleiter anregt, umso besser ist auf der einen Seite der Stromfluss. Andererseits hängt die elektrische Leistung auch von der elektrischen Spannung ab, die sich verringert, wenn positive und negative Ladungen wieder zusammenkommen. Diese Rekombination von Löchern und Elektronen mindert also die elektrische Leistung einer Solarzelle.

Mit dem Elektronenmikroskop und Simulationen Verlusten auf der Spur

„Zunächst haben wir mit dem Elektronenmikroskop die Struktur solcher CIGS-Dünnschicht-Solarzellen untersucht und an exakt der gleichen Stelle die Verteilung der vorhandenen Elemente analysiert“, erklärt Daniel Abou-Ras. Diese Verteilung gibt dem Forscher wichtige Hinweise zur Lage der einzelnen CIGS-Kristalle. Mit einer speziellen Kombination weiterer Methoden klärt das Team diese Mikrostrukturen sehr fein auf.

Die so ermittelte Struktur einer CIGS-Solarzelle mit sehr gutem Wirkungsgrad überträgt die Gruppe dann in ein Computermodell. Diese Simulation passen Daniel Abou-Ras und sein Team mit Hilfe ihrer experimentellen Ergebnisse so lange an, bis sie die Vorgänge in einer echten CIGS-Solarzelle möglichst exakt nachbildet.

„In diesem Computermodell können wir dann beobachten, wie verschiedene Veränderungen die elektrische Leistung einer Solarzelle beeinflussen“, erklärt Daniel Abou-Ras. So hat die absorbierende Schicht einer CIGS-Solarzelle durch eine sogenannte p-leitende Dotierung von vorneherein einen Überschuss an Löchern, die sich dort unregelmäßig verteilen. Variiert die Gruppe im Computermodell die Verteilung dieser Löcher, haben solche Inhomogenitäten keinen messbaren Einfluss auf die elektrische Leistung der Solarzelle. Die Verluste haben also eine andere Ursache. Auch unterschiedliche Lebensdauern der Paare aus Elektronen und Löchern verändern die Leistung der CIGS-Solarzellen nur unwesentlich.

Entscheidend ist, was an den Grenzbereichen der Kristalle passiert

Sehr wohl aber beeinflussen die Grenzbereiche zwischen den einzelnen Kristallen die Leistung deutlich. „Die Atome in CIGS-Kristallen ordnen sich ja in bestimmten Strukturen an“, erklärt Daniel Abou-Ras. An den Stellen, an denen sich zwei solche hochgeordneten Kristalle berühren, passen diese Kristallgitter oft nicht so gut zusammen. Dort entstehen Defekte, die Elektronen oder Löcher gut einfangen können. Das Team ist mit der vorliegenden Arbeit nun in der Lage, recht gut zu bestimmen, wie stark die Ladungen rekombinieren und wie sehr entsprechend Spannung und Leistung der Solarzellen abfallen.

„Dieses Ergebnis gibt den Herstellern einen wichtigen Hinweis, wie sie CIGS-Solarzellen weiter verbessern können“, ist Daniel Abou-Ras überzeugt. Schaffen die Entwickler es, die Kristalle erheblich zu vergrößern, gibt es auch weniger Grenzflächen und der bisherige Rekord-Wirkungsgrad könnte wohl deutlich verbessert werden.

DOI: 10.1038/s41467-020-17507-8

 

Roland Knauer

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.
  • Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Nachricht
    29.07.2024
    Grüner Wasserstoff mit direkter Meerwasser-Elektrolyse – Expert*innen warnen vor einem Hype
    Der Plan klingt bestechend: Neuartige Elektrolyseure sollen aus ungereinigtem Meerwasser mit Strom aus Sonne oder Wind direkt Wasserstoff erzeugen. Doch bei näherer Betrachtung zeigt sich, dass solche DSE-Elektrolyseure (DSE = Direct Seawater Electrolyzers) noch Jahre anspruchsvoller Forschung erfordern. Dabei sind neuartige Elektrolyseure gar nicht nötig, um Meerwasser für die Produktion von Wasserstoff zu verwenden – eine Entsalzung reicht aus, um Meerwasser für konventionelle Elektrolyseure aufzubereiten. In einem Kommentar im Fachjournal Joule vergleichen internationale Expert*innen Kosten und Nutzen der unterschiedlichen Ansätze und kommen zu einer klaren Empfehlung.