Universität Kassel und HZB gründen Joint Lab zur Nutzung künstlicher Intelligenz

Blick in die Experimentierhalle von BESSY II am Helmholtz-Zentrum Berlin. An zirka 50 Strahlrohren führen Forschende Experimente durch. Diese Daten mithilfe von künstlicher Intelligenz effizienter auszuwerten, ist Ziel der Kooperation zwischen Universität Kassel und dem HZB.

Blick in die Experimentierhalle von BESSY II am Helmholtz-Zentrum Berlin. An zirka 50 Strahlrohren führen Forschende Experimente durch. Diese Daten mithilfe von künstlicher Intelligenz effizienter auszuwerten, ist Ziel der Kooperation zwischen Universität Kassel und dem HZB. © HZB/M. Setzpfand

Die Universität Kassel und das Helmholtz-Zentrum Berlin (HZB) richten ein gemeinsames Labor für die Nutzung künstlicher Intelligenz ein, um neue experimentelle Methoden weiterzuentwickeln und die Datenauswertung von Experimenten an BESSY II deutlich zu verbessern.

Jedes Jahr kommen fast 3000 Nutzergruppen aus der ganzen Welt an den Elektronenspeicherring BESSY II, um verschiedenste Materialien mit dem brillanten Röntgenlicht zu untersuchen. „Bei der Erforschung aktueller wissenschaftlicher Fragestellungen, beispielsweise an BESSY II, fallen derart viele Daten an, dass sie mit herkömmlichen Analyseprogrammen nur noch schwer ausgewertet werden können. Im Joint Lab werden dafür Methoden der künstlichen Intelligenz entwickelt und eingesetzt. Diese Methoden sollen es darüber hinaus ermöglichen, auch in anderen naturwissenschaftlich-technischen Bereichen völlig neue Versuchsszenarien zu denken, die in der Vergangenheit als nicht auswertbar erschienen“, sagt Prof. Dr. Arno Ehresmann. Er ist Vizepräsident an der Universität Kassel und dort unter anderem zuständig für den Bereich Forschungsförderung.

Das HZB und die Universität Kassel haben kürzlich einen Kooperationsvertrag zum Aufbau des Joint Lab „Artificial Intelligence Methods for Experiment Design (AIM-ED)“, geschlossen. Ein Joint Lab ist eine in der Helmholtz-Gemeinschaft etablierte, mittel- bis langfristig angelegte Kooperationsform mit Universitäten. „Wir freuen uns, dass wir die Expertisen der Universität Kassel und des Helmholtz-Zentrums Berlin in der künstlichen Intelligenz zusammenführen können, um gemeinsam an wegweisenden Fragestellungen zu arbeiten“, schildert Prof. Ehresmann.

So wird sich das Kasseler Institut für Informationstechnik-Gestaltung (ITeG) an dem Joint Lab beteiligen. „Auch mehrere besonders forschungsstarke Arbeitsgruppen der Physik werden sich mit der Anwendung von KI-Methoden zum Design, zur Auswertung oder Optimierung von Experimenten beschäftigen, unter anderem im Rahmen eines DFG-Sonderforschungsbereichs“, sagt Prof. Ehresmann. Ebenfalls beteiligt sein wird das Fachgebiet Intelligent Embedded Systems unter der Leitung von Prof. Dr. Bernhard Sick, der sich seit langem intensiv mit Fragen des maschinellen Lernens und der Künstlichen Intelligenz beschäftigt.

Durch das neugegründete Joint Lab gebe es viele Synergieeffekte, betont auch Dr. Gregor Hartmann, betreuender Forscher am Helmholtz-Zentrum Berlin. „Bei den Experimenten an BESSY II entstehen immense Datenmengen, wobei neben der Größe der Daten insbesondere die Komplexität und das Verständnis ihrer Entstehung entscheidend für eine gute Auswertung sind.“ Das HZB hat viel Expertise in der Strahlrohr-Entwicklung, während die Arbeitsgruppe von Prof. Ehresmann die Sicht als langjähriger BESSY II-Nutzer und Detektor-Know-how einbringt. Die breitgefächerten Methoden der künstlichen Intelligenz, die Prof. Bernhard Sicks Team abdecke, ermöglichen eine bestmögliche Auswertung der Daten. „Ich freue mich sehr auf die intensive und spannende Zusammenarbeit im Rahmen des JointLab“, sagt Hartmann.

(Uni Kassel/sz)


Das könnte Sie auch interessieren

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.
  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.