Universität Kassel und HZB gründen Joint Lab zur Nutzung künstlicher Intelligenz

Blick in die Experimentierhalle von BESSY II am Helmholtz-Zentrum Berlin. An zirka 50 Strahlrohren führen Forschende Experimente durch. Diese Daten mithilfe von künstlicher Intelligenz effizienter auszuwerten, ist Ziel der Kooperation zwischen Universität Kassel und dem HZB.

Blick in die Experimentierhalle von BESSY II am Helmholtz-Zentrum Berlin. An zirka 50 Strahlrohren führen Forschende Experimente durch. Diese Daten mithilfe von künstlicher Intelligenz effizienter auszuwerten, ist Ziel der Kooperation zwischen Universität Kassel und dem HZB. © HZB/M. Setzpfand

Die Universität Kassel und das Helmholtz-Zentrum Berlin (HZB) richten ein gemeinsames Labor für die Nutzung künstlicher Intelligenz ein, um neue experimentelle Methoden weiterzuentwickeln und die Datenauswertung von Experimenten an BESSY II deutlich zu verbessern.

Jedes Jahr kommen fast 3000 Nutzergruppen aus der ganzen Welt an den Elektronenspeicherring BESSY II, um verschiedenste Materialien mit dem brillanten Röntgenlicht zu untersuchen. „Bei der Erforschung aktueller wissenschaftlicher Fragestellungen, beispielsweise an BESSY II, fallen derart viele Daten an, dass sie mit herkömmlichen Analyseprogrammen nur noch schwer ausgewertet werden können. Im Joint Lab werden dafür Methoden der künstlichen Intelligenz entwickelt und eingesetzt. Diese Methoden sollen es darüber hinaus ermöglichen, auch in anderen naturwissenschaftlich-technischen Bereichen völlig neue Versuchsszenarien zu denken, die in der Vergangenheit als nicht auswertbar erschienen“, sagt Prof. Dr. Arno Ehresmann. Er ist Vizepräsident an der Universität Kassel und dort unter anderem zuständig für den Bereich Forschungsförderung.

Das HZB und die Universität Kassel haben kürzlich einen Kooperationsvertrag zum Aufbau des Joint Lab „Artificial Intelligence Methods for Experiment Design (AIM-ED)“, geschlossen. Ein Joint Lab ist eine in der Helmholtz-Gemeinschaft etablierte, mittel- bis langfristig angelegte Kooperationsform mit Universitäten. „Wir freuen uns, dass wir die Expertisen der Universität Kassel und des Helmholtz-Zentrums Berlin in der künstlichen Intelligenz zusammenführen können, um gemeinsam an wegweisenden Fragestellungen zu arbeiten“, schildert Prof. Ehresmann.

So wird sich das Kasseler Institut für Informationstechnik-Gestaltung (ITeG) an dem Joint Lab beteiligen. „Auch mehrere besonders forschungsstarke Arbeitsgruppen der Physik werden sich mit der Anwendung von KI-Methoden zum Design, zur Auswertung oder Optimierung von Experimenten beschäftigen, unter anderem im Rahmen eines DFG-Sonderforschungsbereichs“, sagt Prof. Ehresmann. Ebenfalls beteiligt sein wird das Fachgebiet Intelligent Embedded Systems unter der Leitung von Prof. Dr. Bernhard Sick, der sich seit langem intensiv mit Fragen des maschinellen Lernens und der Künstlichen Intelligenz beschäftigt.

Durch das neugegründete Joint Lab gebe es viele Synergieeffekte, betont auch Dr. Gregor Hartmann, betreuender Forscher am Helmholtz-Zentrum Berlin. „Bei den Experimenten an BESSY II entstehen immense Datenmengen, wobei neben der Größe der Daten insbesondere die Komplexität und das Verständnis ihrer Entstehung entscheidend für eine gute Auswertung sind.“ Das HZB hat viel Expertise in der Strahlrohr-Entwicklung, während die Arbeitsgruppe von Prof. Ehresmann die Sicht als langjähriger BESSY II-Nutzer und Detektor-Know-how einbringt. Die breitgefächerten Methoden der künstlichen Intelligenz, die Prof. Bernhard Sicks Team abdecke, ermöglichen eine bestmögliche Auswertung der Daten. „Ich freue mich sehr auf die intensive und spannende Zusammenarbeit im Rahmen des JointLab“, sagt Hartmann.

(Uni Kassel/sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Nachricht
    10.10.2024
    HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Ein HZB-Team hat mit Freiberg Instruments einen innovativen Monochromator entwickelt, der nun auf den Markt kommt. Das Gerät ermöglicht es, die optoelektronischen Eigenschaften von Halbleitermaterialien kontinuierlich und rasch mit hoher Präzision zu erfassen, und zwar über einen breiten Spektralbereich vom nahen Infrarot bis ins tiefe Ultraviolett. Dabei wird Streulicht effizient unterdrückt. Die Innovation ist für die Entwicklung neuer Materialien interessant und auch einsetzbar, um industrielle Prozesse besser zu kontrollieren.
  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.