BESSY II: Neue Einblicke in schaltbare MOF-Strukturen an den MX-Beamlines

Blick in einen MOF-Kristall am Beispiel von DUT-8. Die riesigen Poren sind klar erkennbar.</p> <p>

Blick in einen MOF-Kristall am Beispiel von DUT-8. Die riesigen Poren sind klar erkennbar.

© TU Dresden

Metallorganische Gerüstverbindungen (MOFs) finden breite Anwendung in Gasspeicherung, Stofftrennung, Sensorik oder Katalyse. Eine spezielle Klasse dieser MOFs hat nun ein Team um Prof. Dr. Stefan Kaskel, TU Dresden, an den MX-Beamlines von BESSY II untersucht. Es handelt sich um „schaltbare“ MOFs, die auf äußere Reize reagieren können. Ihre Analyse zeigt, wie das Verhalten des Materials mit Übergängen zwischen geordneten und ungeordneten Phasen zusammenhängt. Die Ergebnisse sind nun in Nature Chemistry publiziert.

Metallorganische Gerüstverbindungen (engl.: metal-organic framework compounds – MOFs) bestehen aus anorganischen und organischen Gruppen und zeichnen sich durch eine Unzahl an Poren aus, in die sich andere Moleküle einlagern können. Daher sind MOFs für viele Anwendungen interessant, beispielsweise für die Speicherung von Gasen, aber auch Stofftrennung, Sensorik oder Katalyse. Einige dieser MOF-Strukturen reagieren auf unterschiedliche Gastmoleküle , indem sie ihre Strukturen verändern. Sie gelten damit als schaltbar.

Dazu gehört auch „DUT-8“, ein Material, das nun an den MX-Beamlines von BESSY II untersucht wurde.  „MOF-Kristalle lassen sich an den MX-Beamlines sehr gut analysieren“, sagt HZB-Experte Dr. Manfred Weiss, der das MX-Team leitet. „Denn MOF-Kristalle weisen viele Gemeinsamkeiten mit Proteinkristallen auf. So sind beide von großen Poren durchsetzt, die in den Proteinkristallen mit Flüssigkeit gefüllt sind, während die in den MOFs Gastmolekülen Raum bieten" erläutert Weiss.

„Die Beugungsdiagramme, die DUT-8 an den HZB-MX-Strahlrohren zeigte, waren äußerst komplex. Wir konnten dies nun auf diverse Übergänge zwischen geordneten und weniger geordneten Phasen zurückführen“, erläutert Stefan Kaskel. "Dabei dirigiert das eingeschlossene Gastmolekül das Netzwerk in eine von über tausend möglichen Fehlordnungskonfigurationen." 

Die Ergebnisse tragen dazu bei, Schaltprozesse und Gasaustauschreaktionen in solchen MOF-Strukturen besser zu verstehen, so dass künftige funktionale MOF-Materialien zielgerichtet entwickelt werden können.

Die Untersuchungen wurden durch das DFG-Programm (FOR2433) unterstützt.

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Nachricht
    10.10.2024
    HZB-Patent zur Halbleitercharakterisierung geht in die Serienproduktion
    Ein HZB-Team hat einen innovativen Monochromator entwickelt, der nun von einem Unternehmen produziert und vermarktet wird. Das Gerät ermöglicht es, die optoelektronischen Eigenschaften von Halbleitermaterialien kontinuierlich und rasch mit hoher Präzision zu erfassen, und zwar über einen breiten Spektralbereich vom nahen Infrarot bis ins tiefe Ultraviolett. Dabei wird Streulicht effizient unterdrückt. Die Innovation ist für die Entwicklung neuer Materialien interessant und auch einsetzbar, um industrielle Prozesse besser zu kontrollieren.
  • Wechselströme für alternatives Rechnen mit Magneten
    Science Highlight
    26.09.2024
    Wechselströme für alternatives Rechnen mit Magneten
    Eine neue Studie der Universität Wien, des Max-Planck-Instituts für Intelligente Systeme in Stuttgart und der Helmholtz-Zentren in Berlin und Dresden stellt einen wichtigen Schritt dar, Computerbauelemente weiter zu miniaturisieren und energieeffizienter zu machen. Die in der renommierten Fachzeitschrift Science Advances veröffentlichte Arbeit zeigt neue Möglichkeiten, reprogrammierbare magnetische Schaltungen zu schaffen, indem Spinwellen durch Wechselströme angeregt und bei Bedarf umgelenkt werden. Die Experimente dafür wurden an der Maxymus-Beamline an BESSY II durchgeführt.
  • BESSY II: Heterostrukturen für die Spintronik
    Science Highlight
    20.09.2024
    BESSY II: Heterostrukturen für die Spintronik
    Spintronische Bauelemente arbeiten mit magnetischen Strukturen, die durch quantenphysikalische Wechselwirkungen hervorgerufen werden. Nun hat eine Spanisch-Deutsche Kooperation Heterostrukturen aus Graphen-Kobalt-Iridium an BESSY II untersucht. Die Ergebnisse belegen, wie sich in diesen Heterostrukturen zwei erwünschte quantenphysikalische Effekte gegenseitig verstärken. Dies könnte zu neuen spintronischen Bauelementen aus solchen Heterostrukturen führen.