Lithium-Dendriten auf der Spur: Wie zerstörerische Strukturen in Batterien wachsen

Während des Betriebes herkömmlicher Batteriespeicher wachsen die baumartigen Lithium-Dendriten kontinuierlich und können die elektrisch isolierende Separatorschicht zwischen Anode und Kathode durchstoßen. Die Folge: Ein Kurzschluss und das Lebensende für die Batterie. 

Während des Betriebes herkömmlicher Batteriespeicher wachsen die baumartigen Lithium-Dendriten kontinuierlich und können die elektrisch isolierende Separatorschicht zwischen Anode und Kathode durchstoßen. Die Folge: Ein Kurzschluss und das Lebensende für die Batterie.  © HZB/Ingo Manke, Dong et al.

Während sich das abgelagerte Lithium bei niedrigen elektrischen Strömen als winzige Bälle stapelt, wachsen die Ablagerungen bei hohen Strömen mit der Zeit zu verworrene Gebilden heran - den fraktalen Dendriten.  

Während sich das abgelagerte Lithium bei niedrigen elektrischen Strömen als winzige Bälle stapelt, wachsen die Ablagerungen bei hohen Strömen mit der Zeit zu verworrene Gebilden heran - den fraktalen Dendriten.   © HZB/Ingo Manke, Dong et al.

Winzige Strukturen im Inneren von Lithium-Batterien können die Lebensdauer der Energiespeicher stark einschränken. Den Prozess dahinter hat nun ein Forscherteam vom HZB genauer untersucht. Ihre Ergebnisse liefern Ansatzpunkte für langlebigere und sicherere Lithium-Batterien.

Im Inneren von Lithium-Batterien können sich Dendriten bilden können. Die kleinen Nadeln oder Bäumchen gleichen den verästelten Fortsätzen unserer Nervenzellen, von denen sie ihren Namen erhalten haben. Sie entstehen, wenn die Ionen des Alkalimetalls beim Laden und Entladen zwischen den beiden Polen der Batterie hin und herwandern und auf winzige Kristallisationskeime treffen. Mit jedem Lade- / Entladezyklus wachsen sie und schließen irgendwann die Batterie kurz. Die wird dadurch zerstört – in manchen Fällen sogar mit einer Explosion. Noch ist nicht klar, wie sich diese Gefahr bannen und die Lebensdauer der Energiespeicher erhöhen lässt. Denn wie genau die Dendriten entstehen und wachsen, ist bis heute nicht vollständig verstanden.

Einblicke mit höchster Auflösung und in 3D

Um das Geheimnis von Keimbildung und Wachstum im Lithium zu lüften, hat eine Forschergruppe einen tiefen Blick ins Innere der Batterie geworfen und dafür zwei besondere Untersuchungsmethoden am HZB genutzt. „Während herkömmliche Untersuchungen mit Raster- oder Transmissionselektronenmikroskopen in der Regel ein zweidimensionales Bild liefern, dringen wir mit der fokussierten Ionenstrahl-Rasterelektronenmikroskopie in die dritte Dimension vor“, erklärt Kang Dong. Der Post-Doc arbeitet in der Forschungsgruppe von Ingo Manke, die sich am HZB-Institut for Angewandte Materialforschung mit Bildgebungsverfahren befasst. „Außerdem verwenden wir die kryogene Transmissionselektronenmikroskopie der Arbeitsgruppe von Prof. Dr. Yan Lu am HZB. Durch die tiefen Temperaturen werden die Schäden, die der Elektronenstrahl an unseren Proben anrichtet, auf ein Minimum reduziert und wir erhalten eine naturnahe Auflösung von Struktur und Chemie der Lithium-Ablagerungen im Nanometerbereich.“

Damit gelang den Forschern ein detailgetreuer, hoch aufgelöster Einblick in die innere Strukturen der Lithium-Ablagerungen. „Wir fanden heraus, dass die Dendriten sehr unterschiedliche Strukturen haben, die stark von den lokalen Stromdichten abhängen“, sagt Gruppenleiter Ingo Manke. „Bei niedrigen Strömen sehen sie wie kleine Kugeln aus, die sich mit der Zeit zusammenballen. Bei höheren Strömen ähneln sie eher moosartigen und fraktalen Dendriten.“ Bei ihren Untersuchungen hielten sie die verschiedenen Entwicklungsstadien Lithium-Bälle und der Lithium-Whiskers, die eher Barthaaren gleichen, fest. Um zu verstehen, welche Mechanismen bei der Ablagerung wirken, sind diese dreidimensionalen Bilder ein Meilenstein.

Ansatzpunkte für langlebigere Batterien

„Wir haben auch festgestellt, dass die Dendriten immer an bestimmten Verunreinigungen oder strukturelle Inhomogenitäten auf der Lithium-Oberfläche beginnen“, erzählt Ingo Manke von einer weiteren Entdeckung. „Wie das Lithium genau mit der Zwischenschicht im Inneren der Batterie reagiert, ist bisher noch nicht vollständig verstanden“, fügt Kang Dong hinzu. In der Veröffentlichung schlagen sie bereits vor, wie die Forschung weitergehen könnte: „Wir denken, dass die Optimierung der Elektrolyte und das Engineering der Oberflächen wichtige Ansatzpunkte sind, um die Lithium-Ablagerungen eher kugelförmig und amorph zu halten. Damit könnte sich das Wachstum der verästelten Dendriten verhindern lassen, so dass sich die Zyklenstabilität der Batterien verbessert.“

Link zur Publikation im ACS Energy Letter

Text: Kai Dürfeld


Das könnte Sie auch interessieren

  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.
  • Die Zukunft von BESSY
    Nachricht
    07.03.2024
    Die Zukunft von BESSY
    Ende Februar 2024 hat ein Team am HZB einen Artikel in Synchrotron Radiation News (SRN) veröffentlicht. Darin beschreibt es die nächsten Entwicklungsziele für die Röntgenquelle sowie das Upgrade Programm BESSY II+ und die Nachfolgequelle BESSY III.

  • Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Science Highlight
    26.02.2024
    Unkonventionelle Piezoelektrizität in ferroelektrischem Hafnium
    Hafniumoxid-Dünnschichten sind eine faszinierende Klasse von Materialien mit robusten ferroelektrischen Eigenschaften im Nanometerbereich. Während das ferroelektrische Verhalten ausgiebig untersucht wurde, blieben die Ergebnisse zu den piezoelektrischen Effekten bisher rätselhaft. Eine neue Studie zeigt nun, dass die Piezoelektrizität in ferroelektrischen Hf0,5Zr0,5O2-Dünnschichten durch zyklische elektrische Felder dynamisch verändert werden kann. Ein weiteres bahnbrechendes Ergebnis ist die Möglichkeit einer intrinsischen nicht-piezoelektrischen ferroelektrischen Verbindung. Diese unkonventionellen Eigenschaften von Hafnia bieten neue Optionen für den Einsatz in der Mikroelektronik und Informationstechnologie.