Friedrich-Alexander-Universität Erlangen-Nürnberg beruft Olga Kasian

Olga Kasian hat einen Ruf an die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) angenommen.

Olga Kasian hat einen Ruf an die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) angenommen.

Dr. Olga Kasian untersucht, warum Katalysatoren für die solare Wasserstoffproduktion im Wirkungsgrad begrenzt sind. Nun hat die Chemikerin einen Ruf an die Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) angenommen. Die W2-Professur trägt den Titel „Materialien für die elektrochemische Energieumwandlung“ und ist an der Fakultät für Ingenieurswesen angesiedelt.

Olga Kasian promovierte in 2013 an der Staatsuniversität für Technische Chemie in Dnepropetrovsk, Ukraine, und wurde als beste Absolventin ausgezeichnet. Nach einem ersten Postdoc-Aufenthalt in Deutschland kam sie ab 2015 als Alexander von Humboldt Research Fellow zum Max-Planck-Institut für Eisenforschung in Düsseldorf. In 2015 erhielt sie auch einen Preis des Präsidenten der Ukraine für ihre Forschungsleistung. Seit Mai 2019 leitet sie die Helmholtz Nachwuchsgruppe Dynamische elektrokatalytische Grenzflächen’ am HZB und am Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien (HI-ERN).

Sie untersucht mit ihrem Team, wie sich die katalytisch aktiven Oberflächen unter Reaktionsbedingungen verändern und greift dafür auf ein breites Spektrum an Methoden zu, unter anderem auf spektroskopische Analysemethoden, die im EMIL-Labor an der Synchrotronstrahlungsquelle BESSY II zur Verfügung stehen.

 

arö

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.
  • Elektrokatalyse unter dem Rasterkraftmikroskop
    Science Highlight
    09.03.2023
    Elektrokatalyse unter dem Rasterkraftmikroskop
    Eine Weiterentwicklung der Rasterkraftmikroskopie macht es nun möglich, das Höhenprofil nanometerfeiner Strukturen sowie den elektrischen Strom und die Reibungskraft an fest-flüssig Grenzflächen zeitgleich abzubilden. Damit gelang es einem Team am Helmholtz-Zentrum Berlin (HZB) sowie am Fritz-Haber-Institut (FHI) der Max-Planck-Gesellschaft, elektrokatalytisch aktive Materialien zu analysieren und Einblicke zu gewinnen, die für die Katalysatoroptimierung hilfreich sind. Die Methode eignet sich darüber hinaus auch, um Prozesse an Batterieelektroden, bei der Photokatalyse oder an aktiven Biomaterialien zu untersuchen.