Grüner Wasserstoff: Nanostrukturiertes Nickelsilizid glänzt als Katalysator

Aus kristallinem Nickelsilizid (links) wird durch eine chemische Umwandlung nanostrukturiertes Material mit exzellenten katalytischen Eigenschaften, sowohl für die elektrolytische Aufspaltung von Wasser als auch für die Produktion wertvoller Nitril-Verbindungen.

Aus kristallinem Nickelsilizid (links) wird durch eine chemische Umwandlung nanostrukturiertes Material mit exzellenten katalytischen Eigenschaften, sowohl für die elektrolytische Aufspaltung von Wasser als auch für die Produktion wertvoller Nitril-Verbindungen. © P. Menezes /HZB/TU Berlin

Die Transmissionselektronenmikroskopie-Aufnahme (TEM, grau) der katalytisch aktiven Phase wurde hier mit Röntgenspektroskopie-Analysen kombiniert, um die Verteilung von Nickel (grün), Silizium (blau) und Sauerstoff (rot) zu kartieren.

Die Transmissionselektronenmikroskopie-Aufnahme (TEM, grau) der katalytisch aktiven Phase wurde hier mit Röntgenspektroskopie-Analysen kombiniert, um die Verteilung von Nickel (grün), Silizium (blau) und Sauerstoff (rot) zu kartieren. © P. Menezes /HZB/TU Berlin

Elektrische Energie aus Wind oder Sonne lässt sich als chemische Energie in Wasserstoff speichern, einem hervorragenden Kraftstoff und Energieträger. Voraussetzung dafür ist allerdings die effiziente Elektrolyse von Wasser mit kostengünstigen Katalysatoren. Nanostrukturiertes Nickelsilizid kann die Effizienz der Sauerstoffentwicklungsreaktion an der Anode deutlich steigern. Dies zeigte nun ein Team aus dem HZB, der Technischen Universität Berlin und der Freien Universität Berlin im Rahmen der Forschungsplattform CatLab unter anderem auch mit Messungen an BESSY II.

Elektrolyse dürften viele noch aus dem Chemieunterricht kennen: Zwei Elektroden werden in Wasser getaucht und unter Spannung gesetzt und bald steigen an den Elektroden Gasblasen auf: An der Anode bildet sich Sauerstoffgas, an der Kathode Wasserstoffblasen – beide Gase entstehen, weil sich die Wassermoleküle (H2O) in Wasserstoff (H2) und Sauerstoff (O2) zerlegen. Mit Elektrolyse könnte Wasserstoff CO2-neutral hergestellt werden - vorausgesetzt, der benötigte Strom wird durch Sonne oder Wind erzeugt. Allerdings sind diese Reaktionen wenig effizient und extrem langsam. Um sie zu beschleunigen, werden katalytisch aktive Materialien aus teuren Edelmetallen wie Platin, Ruthenium oder Iridium eingesetzt. Für einen großtechnischen Einsatz müssen solche Katalysatoren jedoch aus weithin verfügbaren und sehr billigen Elementen bestehen.

Chemisch induzierte Nanostrukturen

Um die Sauerstoffentwicklungsreaktion an der Anode zu beschleunigen, gelten Materialien auf Nickelbasis als gute Kandidaten. Nickel ist korrosionsbeständig, kaum toxisch und zudem preiswert. Um Katalysatormaterialien auf Nickelbasis herzustellen, setzte man bislang meist auf energieintensive Hochtemperaturverfahren. Ein Team um Dr. Prashanth Menezes (HZB/TU Berlin) hat nun einen "sanften“ chemischen Weg gefunden, um einen effizienten Katalysator auf Basis von intermetallischen Nickel-Silizium-Nanokristallen herzustellen: "Wir haben das Element Nickel mit Silizium, dem zweithäufigsten Element in der Erdkruste, kombiniert und über eine chemische Reaktion eine Nanostrukturierung erreicht. Das daraus resultierende Material hat hervorragende katalytische Eigenschaften", sagt Menezes.

Das kristalline Ni2Si diente als Präkatalysator für die alkalische Sauerstoffentwicklungsreaktion an der Anode: Unter Betriebsbedingungen bildete sich an der Oberfläche Nickel(oxy)hydroxid als aktiver Katalysator. Bemerkenswert ist auch, dass die Wasserelektrolyse mit einer organischen Oxidationsreaktion gekoppelt ist, bei der durch Elektrosynthese industriell wertvolle Nitrilverbindungen entstehen. Solche elektrosynthetischen Methoden können die Wasserstofferzeugung an der Kathode steigern und gleichzeitig den Zugang zu wertvollen Industrieprodukten an der Anode ermöglichen.

Effizienter und stabiler

Im Vergleich zu modernen Katalysatoren auf Nickel-, Kobalt-, Eisen-, Ruthenium- und Iridiumbasis ist das nanoporöse Ni2Si wesentlich aktiver und bleibt unter industriellen Bedingungen über längere Zeit stabil. Um das Verhalten von Ni2Si genauer zu verstehen, kombinierte das Team verschiedene Messmethoden, darunter Elementaranalysen, Elektronenmikroskopie und moderne spektroskopische Messungen bei BESSY II. "In Zukunft könnten sogar industrielle alkalische Wasserelektrolyseure mit einer Beschichtung aus diesem nanoporösen Nickelsilizd ausgestattet werden", sagt Menezes.

 

arö

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.
  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.