Grüner Wasserstoff: Raschere Fortschritte durch moderne Röntgenquellen

Manganoxide kommen in verschiedenen strukturellen Varianten vor. Das macht sie zu einer spannenden Materialklasse für Elektrokatalysatoren.

Manganoxide kommen in verschiedenen strukturellen Varianten vor. Das macht sie zu einer spannenden Materialklasse für Elektrokatalysatoren. © M. Risch/HZB

Mit der Elektrokatalyse von Wasser lässt sich elektrische Energie aus Sonne oder Wind zur Erzeugung von grünem Wasserstoff nutzen und so speichern. Ein Überblicksbeitrag in der Fachzeitschrift Angewandte Chemie zeigt, wie moderne Röntgenquellen wie BESSY II die Entwicklung von passenden Elektrokatalysatoren vorantreiben können. Insbesondere lassen sich mit Hilfe von Röntgenabsorptionsspektroskopie die aktiven Zustände von katalytisch aktiven Materialien für die Sauerstoffentwicklungsreaktion bestimmen. Dies ist ein wichtiger Beitrag, um effiziente Katalysatoren aus günstigen und weit verbreiteten Elementen zu entwickeln.

Grüner Wasserstoff ist ein Energieträger mit Zukunft. Er wird durch die elektrolytische Aufspaltung von Wasser mit Energie aus Wind oder Sonne gewonnen und speichert diese Energie in chemischer Form. Damit die Aufspaltung von Wassermolekülen leichter (und mit weniger Energieeinsatz) gelingt, sind die Elektroden mit katalytisch aktiven Materialien beschichtet. Dr. Marcel Risch untersucht mit seinem Team in der Nachwuchsgruppe "Gestaltung des Sauerstoffentwicklungsmechanismus" die Sauerstoffentwicklung bei der Elektrokatalyse von Wasser. Denn vor allem die Sauerstoffentwicklung muss für eine wirtschaftliche Wasserstoffproduktion noch effizienter ablaufen.

Manganoxide als Multitalente

Eine spannende Materialklasse für Elektrokatalysatoren sind Manganoxide, die in vielen verschiedenen strukturellen Varianten vorkommen. „Ein entscheidendes Kriterium für die Eignung als Elektrokatalysator ist die Oxidationszahl des Materials und wie sie sich im Lauf der Reaktion verändert“, erläutert Risch. Bei den Manganoxiden gibt es auch hierbei eine große Vielfalt.

Röntgen-Methoden 

Informationen über die Oxidationszustände bringt die Röntgenabsorptionsspektroskopie (XAS): Röntgenquanten mit passender Energie regen dabei Elektronen auf den innersten Schalen an, die diese Quanten absorbieren. Je nach Oxidationszahl kann man diese Absorption bei unterschiedlichen Anregungsenergien beobachten. Das Team um Risch hat eine Elektrolyse-Zelle konstruiert, die XAS-Messungen während der Elektrolyse ermöglicht.

Oxidationszahlen und Veränderungen messen

„Mit der Röntgenabsorptionsspektroskopie können wir nicht nur die Oxdationszahlen ermitteln, sondern auch Korrosionsprozesse oder Phasenveränderungen im Material beobachten“, sagt Risch. Kombiniert mit elektrochemischen Messungen ergibt sich aus den Messdaten damit ein deutlich besseres Verständnis des Materials während der Elektrokatalyse. Die benötigte hohe Intensität der Röntgenstrahlung steht allerdings nur an modernen Synchrotronlichtquellen zur Verfügung. In Berlin betreibt das HZB dafür BESSY II. Weltweit gibt es etwa 50 solcher Lichtquellen für die Forschung.

Zeitskalen erweitern

Risch sieht noch großes Potenzial für die Anwendung von Röntgenabsorptionsspektroskopie, insbesondere was die Zeitskalen der Beobachtung betrifft. Denn typische Messzeiten betragen einige Minuten pro Messung. Elektrokatalytische Reaktionen finden jedoch auf kürzeren Zeitskalen statt. „Wenn wir bei der Elektrokatalyse zuschauen könnten während sie passiert, könnten wir wichtige Details besser verstehen “ , meint Risch. Mit diesem Wissen würden sich preiswerte und umweltfreundliche Katalysatoren rascher entwickeln lassen. Andererseits finden viele „Alterungsprozesse“ binnen Wochen oder Monaten statt. „Wir könnten zum Beispiel in regelmäßigen Abständen die gleiche Probe immer wieder untersuchen, um diese Prozesse zu verstehen“, rät Risch. Damit ließen sich zusätzlich noch langlebigere Elektrokatalysatoren entwickeln.

arö


Das könnte Sie auch interessieren

  • Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Nachricht
    19.06.2024
    Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) eröffnet
    Am 17. Juni 2024 ist in Jena das Helmholtz-Institut für Polymere in Energieanwendungen (HIPOLE Jena) im Beisein von Wolfgang Tiefensee, Minister für Wirtschaft, Wissenschaft und Digitale Gesellschaft des Freistaates Thüringen, feierlich eröffnet worden. Das Institut wurde vom Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) in Kooperation mit der Friedrich-Schiller-Universität Jena gegründet: Es widmet sich der Entwicklung nachhaltiger Polymermaterialien für Energietechnologien. Diese sollen eine Schlüsselrolle bei der Energiewende spielen und Deutschlands Ziel unterstützen, bis 2045 klimaneutral zu werden.
  • „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Interview
    18.06.2024
    „Forschung und Entwicklung ist auch in Kriegszeiten entscheidend!“
    Am 11. und 12. Juni fand die Ukraine Recovery Conference in Berlin statt. Begleitend diskutierten Vertreter*innen von Helmholtz, Fraunhofer und Leibniz, wie Forschung zu einem nachhaltigen Wiederaufbau der Ukraine beitragen kann. In diesem Interview spricht Bernd Rech, wissenschaftlicher Geschäftsführer am HZB, über die Bedeutung von Forschung während des Krieges und Projekten wie Green Deal Ukraina.

  • MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Science Highlight
    17.06.2024
    MXene als Energiespeicher: Chemische Bildgebung blickt nun tiefer
    Eine neue Methode in der Spektromikroskopie verbessert die Untersuchung chemischer Reaktionen auf der Nanoskala, sowohl auf Oberflächen als auch im Inneren von Schichtmaterialien. Die Raster-Röntgenmikroskopie (SXM) an der MAXYMUS-Beamline von BESSY II ermöglicht den hochsensitiven Nachweis von chemischen Gruppen, die an der obersten Schicht (Oberfläche) adsorbiert oder in der MXene-Elektrode (Volumen) eingelagert sind. Die Methode wurde von einem HZB-Team unter der Leitung von Dr. Tristan Petit entwickelt. Das Team demonstrierte die Methode nun an MXene-Flocken, einem Material, das als Elektrode in Lithium-Ionen-Batterien eingesetzt wird.