Fraktonen als Informationsspeicher: Noch nicht greifbar, aber nah

Aus den numerischen Modellierungen ergibt sich die Fraktonen-Signatur mit typischen Knotenpunkten, die sie mit Neutronenstreuung auch experimentell zu beobachten sein sollte (links). Durch das Zulassen von Quantenfluktuationen verschmiert diese Signatur, selbst bei T=0 (rechts).

Aus den numerischen Modellierungen ergibt sich die Fraktonen-Signatur mit typischen Knotenpunkten, die sie mit Neutronenstreuung auch experimentell zu beobachten sein sollte (links). Durch das Zulassen von Quantenfluktuationen verschmiert diese Signatur, selbst bei T=0 (rechts). © HZB

Ein neues Quasiteilchen mit interessanten Eigenschaften ist aufgetaucht – vorerst allerdings nur in theoretischen Modellierungen von Festkörpern mit bestimmten magnetischen Eigenschaften. Anders als erwartet, bringen Quantenfluktuationen das Quasiteilchen jedoch nicht deutlicher zum Vorschein, sondern verschmieren seine Signatur, zeigt nun ein internationales Team am HZB und der Freien Universität Berlin.

 

Anregungen in Festkörpern lassen sich mathematisch auch als Quasiteilchen abbilden, zum Beispiel können Gitterschwingungen, die mit der Temperatur zunehmen, gut als Phononen beschrieben werden. Rein mathematisch sind jedoch auch Quasiteilchen möglich, die bislang noch nie in einem Material beobachtet wurden. Wenn solche "theoretischen" Quasiteilchen interessante Talente besitzen, dann lohnt sich ein näherer Blick. Zum Beispiel auf die Fraktonen.

Kandidaten für die Speicherung von Information

Fraktonen sind Bruchteile von Spinanregungen und dürfen keine kinetische Energie besitzen. Das bedeutet: Sie sind vollkommen ortsfest. Damit sind Fraktonen neue Kandidaten für die perfekt sichere Informationsspeicherung. Zumal sie sich unter besonderen Bedingungen dann doch versetzen lassen, nämlich Huckepack auf einem weiteren Quasiteilchen. „Die Fraktonen sind aus einer mathematischen Erweiterung der Quantenelektrodynamik entstanden, in denen elektrische Felder nicht als Vektoren, sondern als Tensoren behandelt werden - ganz losgelöst von realen Materialien“, erklärt Prof. Dr. Johannes Reuther, theoretischer Physiker an der Freien Universität Berlin und am HZB.

Einfache Modellsysteme

Um Fraktonen in Zukunft auch experimentell beobachten zu können, ist es nötig, möglichst einfache Modellsysteme zu finden: Daher modellierte man zunächst oktaedrische Kristallstrukturen mit antiferromagnetisch wechselwirkenden Eckatomen. Dabei zeigten sich besondere Muster mit verschiedenen Knotenpunkten in den Spin-Korrelationen, die im Prinzip in einem realen Material auch experimentell mit Neutronenexperimenten nachweisbar sein müssten. „Die Spins wurden in bisherigen Arbeiten jedoch wie klassische Vektoren behandelt, ohne Berücksichtigung von Quantenfluktuationen“, sagt Reuther.

Jetzt mit Quantenfluktuationen

Deshalb hat nun Reuther zusammen mit Yasir Iqbal vom Indian Institute of Technology in Chennai, Indien und seinem Doktoranden Nils Niggemann erstmals Quantenfluktuationen in die Berechnung dieses oktaedrischen Festkörpersystems mit aufgenommen. Es handelt sich um sehr aufwändige numerische Berechnungen, die grundsätzlich in der Lage sind, Fraktonen abzubilden. „Das Ergebnis hat uns überrascht, denn tatsächlich sehen wir, dass Quantenfluktuationen die Fraktonen nicht deutlicher hervortreten lassen, sondern im Gegenteil, vollständig verwischen, sogar am absoluten Nullpunkt der Temperatur“, sagt Niggemann.

Im nächsten Schritt wollen die drei theoretischen Physiker eine Modellierung entwickeln, in der sich Quantenfluktuationen hoch- oder runterregeln lassen. Eine Art Zwischenwelt zwischen der klassischen Festkörperphysik und den bisherigen Simulationen, in der sich die erweiterte quantenelektrodynamische Theorie mit ihren Fraktonen genauer untersuchen lässt.

Von Theorie zum Experiment

Noch ist kein Material bekannt, das Fraktonen zeigt. Aber wenn die nächsten Modellierungen genauere Hinweise geben, wie Kristallstruktur und magnetische Wechselwirkungen beschaffen sein müssten, dann könnten Teams aus der Experimentalphysik damit beginnen, solche Materialien zu entwerfen und durchzumessen. „In den nächsten Jahren wird es sicher noch keine Anwendung dieser Erkenntnisse geben, aber vielleicht in den kommenden Dekaden und dann wäre es der berühmte Quantensprung, mit wirklich neuen Eigenschaften“, sagt Reuther.

Antonia Rötger


Das könnte Sie auch interessieren

  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.
  • Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Science Highlight
    03.04.2024
    Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Die Wechselwirkungen zwischen Phosporsäure und dem Platin-Katalysator in Hochtemperatur-PEM-Brennstoffzellen sind komplexer als bisher angenommen. Röntgen-Experimente an BESSY II in einem mittleren Energiebereich (tender x-rays) haben die vielfältigen Oxidationsprozesse an der Platin-Elektrolyt-Grenzfläche entschlüsselt. Die Ergebnisse zeigen auch, dass die Feuchtigkeit in der Brennstoffzelle diese Prozesse beeinflusst, so dass sich hier Möglichkeiten bieten, um Lebensdauer und Wirkungsgrad von Brennstoffzellen zu erhöhen. 
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.