Solarer Wasserstoff: Hürden für Ladungstransport in Metalloxiden

Im Femtosekundenlabor werden alle Proben sowohl mit einer Terahertz-Methode (OPTP) als auch mit Mikrowellenspektroskopie (TRMC) untersucht, beide Messmethoden liefern zunächst Informationen über die Mobilität und Lebensdauer der Ladungsträger in Metalloxiden- allerdings auf unterschiedlichen Zeitskalen.

Im Femtosekundenlabor werden alle Proben sowohl mit einer Terahertz-Methode (OPTP) als auch mit Mikrowellenspektroskopie (TRMC) untersucht, beide Messmethoden liefern zunächst Informationen über die Mobilität und Lebensdauer der Ladungsträger in Metalloxiden- allerdings auf unterschiedlichen Zeitskalen. © HZB

Metalloxide eignen sich theoretisch ideal als Photoelektroden für die direkte Erzeugung von Wasserstoff mit Sonnenlicht. Nun gelang es einem Team am Helmholtz-Zentrum Berlin erstmals, die Transporteigenschaften der Ladungsträger in unterschiedlichen Metalloxiden über einen Zeitbereich von neun Größenordnungen zu ermitteln.

Dies gelang durch die Kombination von Terahertz- und Mikrowellen-Analysen in einem Zeitbereich von von 100 Femtosekunden bis 100 Mikrosekunden. Dabei zeigte sich bzgl. Metalloxide, wie Ladungsträger festgehalten werden oder ganz verloren gehen, und damit nicht zur Erzeugung von Wasserstoff zur Verfügung stehen. An ersten Materialen konnten diese Effekte verringert werden, was bessere Photoelektroden ermöglicht.

Metalloxide eignen sich theoretisch ideal als Photoelektroden

Klimaneutral erzeugter Wasserstoff soll als Brennstoff und Rohstoff künftig eine große Rolle spielen. Dabei wird Wasserstoff durch Elektrolyse von Wasser erzeugt, entweder mit einem indirekten Ansatz, in welchem eine externe Energiequelle (Solarmodul oder Windrad) die Elektrolysezelle mit Spannung versorgt oder mit einem direkten Ansatz: Einer photoelektrochemischen Zelle, in der die Photoelektrode selbst die elektrische Energie für die Elektrolyse liefert (PEC-Zelle). Dieser direkte Ansatz hätte einige Vorteile, ist aber bislang noch nicht wettbewerbsfähig.

Dies liegt bisher vor allem am Mangel an geeigneten Photoelektroden. Als prinzipiell geeignet gelten Metalloxide, sie sind preiswert, ungiftig, stabil in wässriger Lösung und besitzen zudem oft noch katalytische Eigenschaften, die die gewünschte chemische Reaktion beschleunigen können. Und Sonnenlicht setzt Ladungsträger in Metalloxiden frei, erzeugt also eine elektrische Spannung. Aber Im Vergleich zu dotierten Halbleitern wie Silizium sind diese Ladungsträger nicht sehr mobil, sondern eher langsam, oder setzen sich gleich wieder im Gitter fest, werden also lokalisiert. Dafür sorgen verschiedene Mechanismen auf unterschiedlichen Zeit- und Längenskalen, die noch kaum erforscht sind.

Im Femtosekundenlaserlabor am HZB hat das Team um Dr. Dennis Friedrich und Dr. Hannes Hempel nun erstmals im Detail untersucht, was die Leitfähigkeit von Metalloxiden begrenzt: „Dabei wollten wir herausfinden, wie stark Ladungsträger lokalisiert werden und wie dies ihre Mobilität zu unterschiedlichen Zeiten herabsetzt“, sagt Markus Schleuning, Erstautor der Studie, der zu diesem Thema promoviert hat.

„Zunächst haben wir ein neues Verfahren entwickelt, um die Diffusionslängen zu bestimmen. Die simple Gleichung kann auch auf andere Materialklassen wie Halide-Perowskite oder Silizium angewendet werden“, erklärt Hempel. „Dann haben wir heraus gefunden, das dies für bestimmte Materialien nicht funktioniert und zwar genau dann, wenn die Ladungsträger lokalisiert sind“, fügt Friedrich hinzu.

Beste Materialien für klimaneutral erzeugten Wasserstoff

Im Femtosekundenlabor werden dafür alle Proben sowohl mit einer Terahertz-Methode (OPTP) als auch mit Mikrowellenspektroskopie (TRMC) untersucht. Beide Messmethoden ermöglichen zunächst Aussagen zu Beweglichkeit und Lebenszeit der Ladungsträger– jedoch auf unterschiedlichen Zeitskalen. Dabei können die jeweiligen Ergebnisse stark voneinander abweichen – ein Beleg dafür, dass Ladungsträger in der Zwischenzeit lokalisiert wurden. Von ultraschnellen Prozessen im Bereich von 100 Femtosekunden bis zu langsameren Vorgängen, die 100 Mikrosekunden dauerten, konnte das Team die Dynamik der Ladungsträger in den Materialien bestimmen. Zum Vergleich: Dies wären auf unsere menschliche Zeitwahrnehmung hochgerechnet Veränderungen in Zeitspannen von 1 Sekunde bis zu 31 Jahren.

Die Physiker analysierten mit diesem Verfahren zehn Metalloxid-Verbindungen, darunter Fe2O3, CuFeO2, α-SnWO4, BaSnO3 und CuBi2O4. Bei allen Materialien waren die Mobilitäten im Vergleich zu herkömmlichen Halbleitern sehr gering. Mit Tempern, einer Wärmebehandlung, gelang es, in BaSnO3, die Mobilität deutlich zu verbessern. Am besten schnitt das bekannte Bismutvanadat (BiVO4) ab, wo es kaum zur Lokalisation von Ladungsträgern auf den untersuchten Längenskalen kommt. Die Studie zeigt, wie sich Metalloxidverbindungen charakterisieren lassen, um die besten Materialien für Photoelektroden zu identifizieren und weiter zu entwickeln.

arö


Das könnte Sie auch interessieren

  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.
  • Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Science Highlight
    03.04.2024
    Brennstoffzellen: Oxidationsprozesse von Phosphorsäure aufgeklärt
    Die Wechselwirkungen zwischen Phosporsäure und dem Platin-Katalysator in Hochtemperatur-PEM-Brennstoffzellen sind komplexer als bisher angenommen. Röntgen-Experimente an BESSY II in einem mittleren Energiebereich (tender x-rays) haben die vielfältigen Oxidationsprozesse an der Platin-Elektrolyt-Grenzfläche entschlüsselt. Die Ergebnisse zeigen auch, dass die Feuchtigkeit in der Brennstoffzelle diese Prozesse beeinflusst, so dass sich hier Möglichkeiten bieten, um Lebensdauer und Wirkungsgrad von Brennstoffzellen zu erhöhen. 
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.