Befruchtung unter dem Röntgenstrahl

© Joana C. Carvalho

Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.

Die Befruchtung bei Säugetieren beginnt, wenn sich ein Spermium an die Eihülle heftet: diese Hülle muss das Spermium durchdringen, um mit der Eizelle zu verschmelzen. Jetzt hat ein internationales Team die Struktur und Funktion des Proteins ZP2 im Detail entschlüsselt. ZP2 ist eine Komponente des Eihüllenfilaments, die eine Schlüsselrolle bei der Regulierung der Interaktion zwischen Ei- und Samenzelle bei der Befruchtung spielt.

"Es war bekannt, dass ZP2 gespalten wird, nachdem das erste Spermium in die Eizelle eingedrungen ist, und wir erklären, wie dieses Ereignis die Eihülle härter und undurchlässiger für andere Spermien macht", sagt Luca Jovine, Professor am Department of Biosciences and Nutrition, Karolinska Institutet, der die Studie leitete. "Dies verhindert Polyspermie - die Verschmelzung mehrerer Spermien mit einer einzigen Eizelle - was für den Embryo fatal ist“.

Einsatz von KI Alphafold

Die Forscher*innen kombinierten Röntgenkristallographie und Kryo-EM, um die 3D-Struktur der Eihüllenproteine zu untersuchen. Die Interaktion zwischen Spermien und Eiern, die Mutationen im ZP2-Protein tragen, wurde an Mäusen untersucht, während das KI-Programm AlphaFold verwendet wurde, um die Struktur der Eihülle beim Menschen vorherzusagen.

Die Studie wurde in Zusammenarbeit mit den Universitäten Osaka und Sophia in Japan und der Universität Pittsburgh in den USA durchgeführt, die Messdaten stammen aus Experimenten bei SciLifeLab und an den Röntgenquellen ESRF, DLS und BESSY II.

Karolinska Institutet


Das könnte Sie auch interessieren

  • Dynamische Messungen in Flüssigkeiten jetzt auch im Labor
    Science Highlight
    23.05.2024
    Dynamische Messungen in Flüssigkeiten jetzt auch im Labor
    Ein Team aus Berliner Forscher*innen hat ein Laborspektrometer entwickelt, um chemische Prozesse in Lösung zu analysieren – und das mit 500 ps Zeitauflösung. Dies ist nicht nur für die Forschung an molekularen Prozessen in der Biologie interessant, sondern auch für die Entwicklung von neuartigen Katalysatormaterialien. Bisher war dafür allerdings meist Synchrotronstrahlung erforderlich, wie sie nur an großen, modernen Röntgenquellen wie BESSY II zur Verfügung steht. Nun funktioniert das Verfahren mit einer Plasmalichtquelle im Labormaßstab.
  • Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Science Highlight
    21.05.2024
    Schlüsselrolle von Nickel-Ionen im Simons-Prozess entdeckt
    Forscher*innen der Bundesanstalt für Materialforschung und -prüfung (BAM) und der Freien Universität Berlin haben erstmals den genauen Mechanismus des Simons-Prozesses entschlüsselt. Das interdisziplinäre Forschungsteam nutzte dafür die Synchrotronquelle BESSY II am Helmholtz-Zentrum Berlin.

  • Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Science Highlight
    25.04.2024
    Gefriergussverfahren – Eine Anleitung für komplex strukturierte Materialien
    Gefriergussverfahren sind ein kostengünstiger Weg, um hochporöse Materialien mit hierarchischer Architektur, gerichteter Porosität und multifunktionalen inneren Oberflächen herzustellen. Gefriergegossene Materialien eignen sich für viele Anwendungen, von der Medizin bis zur Umwelt- und Energietechnik. Ein Beitrag im Fachjournal „Nature Reviews Methods Primer“ vermittelt nun eine Anleitung zu Gefriergussverfahren, zeigt einen Überblick, was gefriergegossene Werkstoffe heute leisten, und skizziert neue Einsatzbereiche. Ein besonderer Fokus liegt auf der Analyse dieser Materialien mit Tomoskopie.