Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert

Eine Fluorverbindung zwischen Perowskitschicht und Buckyball-Kontaktschicht (C<sub>60</sub>) bildet einen fast monomolekularen Film, der wie eine chemische, sch&uuml;tzende Barriere wirkt und die Stabilit&auml;t der Zelle steigert.&nbsp;

Eine Fluorverbindung zwischen Perowskitschicht und Buckyball-Kontaktschicht (C60) bildet einen fast monomolekularen Film, der wie eine chemische, schützende Barriere wirkt und die Stabilität der Zelle steigert.  © Guixiang Li/Nature Photonics 2025

Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.

„Wir haben eine Fluorverbindung verwendet, die zwischen die Perowskitschicht und der Buckyball-Kontaktschicht (C60) gleitet und dort einen fast monomolekularen Film bildet“, erklärt Abate. Diese teflonartigen Moleküle isolieren die Perowskitschicht chemisch von der Kontaktschicht, was zu weniger Defekten und Verlusten führt. Darüber hinaus erhöht die Zwischenschicht die strukturelle Stabilität beider Schichten, aber ganz besonders in der C60-Schicht. Dadurch wird diese gleichmäßiger und kompakter. „Es ist eigentlich wie der Teflon-Effekt“, sagt Abate. „Die Zwischenschicht bildet eine chemische Barriere, die Defekte verhindert, während der Ladungstransport weiterhin möglich bleibt.“

Ein Großteil der experimentellen Forschung wurde vom Erstautor Guixiang Li durchgeführt, während er als Doktorand in Abates Team tätig war. Guixiang Li ist heute Professor an der Southeast University in Nanjing, China, und setzt die Zusammenarbeit fort. An der Studie waren auch Teams der École Polytechnique Fédérale de Lausanne (EPFL) und des Imperial College London beteiligt.

Hoher und stabiler Wirkungsgrad 

Mit diesem Ansatz können Perowskit-Solarzellen einen Wirkungsgrad von 27 Prozent im Labormaßstab erreichen, was etwas höher ist als der Wirkungsgrad von 26 Prozent ohne Zwischenschicht. Die Steigerung der Stabilität ist enorm: Selbst nach 1.200 Stunden kontinuierlicher Beleuchtung durch eine „Standard-Sonne“ nimmt dieser hohe Wirkungsgrad nicht ab. „1.200 Stunden entsprechen einem Jahr im Außenbereich“, betont Abate. Bei der Vergleichszelle ohne „Teflonschicht“ sank der Wirkungsgrad bereits nach 300 Stunden um 20 Prozent. Die Beschichtung verleiht der Solarzelle auch eine außergewöhnliche thermische Stabilität, wenn sie 1.800 Stunden lang bei 85 °C gealtert und 200 Zyklen zwischen –40 °C und +85 °C getestet wird. Die hier vorgestellten Perowskit-Solarzellen haben eine invertierte (p-i-n) Struktur, die sich besonders gut für den Einsatz in Tandemzellen eignet, beispielsweise in Kombination mit Siliziumzellen.

Die Idee reicht lang zurück

„Die Idee, solche teflonartigen Moleküle zur Bildung einer Zwischenschicht zu verwenden, beschäftigt mich seit meiner Zeit als Postdoktorand im Labor von Henry Snaith, der Pionierarbeit auf dem Gebiet der Perowskit-Materialien geleistet hat. Damals, im Jahr 2014, lag der Wirkungsgrad bei nur 15 Prozent und sank innerhalb weniger Stunden deutlich. Wir haben enorme Fortschritte gemacht“, sagt Abate. Diese Ergebnisse ebnen den Weg für die nächste Generation hocheffizienter und hochstabiler optoelektronischer Bauelemente auf Perowskitbasis.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.