Elektrokatalyse mit doppeltem Nutzen – ein Überblick

Mit in situ und operando Methoden an Synchrotronquellen können komplexe organische Oxidationsreaktionen in Echtzeit beobachtet und analysiert werden. 

Mit in situ und operando Methoden an Synchrotronquellen können komplexe organische Oxidationsreaktionen in Echtzeit beobachtet und analysiert werden.  © Debabrata Bagchi / HZB

Schema eines hybriden Elektrolyseurs, der an der Kathode Wasserstoff erzeugt, während an der Anode wertvolle organische Verbindungen entstehen. 

Schema eines hybriden Elektrolyseurs, der an der Kathode Wasserstoff erzeugt, während an der Anode wertvolle organische Verbindungen entstehen.  © Debabrata Bagchi / HZB

Diese Grafik bietet einen Überblick über die Themen, die in dem ausführlichen Beitrag behandelt werden.  Zu den in OOR verwendeten aktiven Metallen gehören Nickel, Kobalt, Kupfer, Mangan, Ruthenium, Platin, Palladium und Gold.

Diese Grafik bietet einen Überblick über die Themen, die in dem ausführlichen Beitrag behandelt werden.  Zu den in OOR verwendeten aktiven Metallen gehören Nickel, Kobalt, Kupfer, Mangan, Ruthenium, Platin, Palladium und Gold. © Debabrata Bagchi / HZB

Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.

Hybride Wasserelektrolyseure erzeugen an der Kathode Wasserstoff oder andere Reduktionsprodukte, während an der Anode wertvolle organische Oxidationsprodukte entstehen. Dieser innovative Ansatz erhöht die Rentabilität der Wasserstofferzeugung erheblich. Ein weiterer Vorteil besteht darin, dass die herkömmliche Synthese für solche organischen Verbindungen oft aggressive Reagenzien erfordern, während die Elektrokatalyse mit organischen Oxidationsreaktionen (OOR) relativ umweltfreundlich ist.

Allerdings sind organische Oxidationsreaktionen sehr komplex, sie umfassen mehrere Oxidationszustände des Katalysators, Phasenübergänge, Zwischenprodukte, die Bildung und Auflösung von Bindungen sowie eine unterschiedliche Produktselektivität. Die Forschung zu OOR steckt noch in den Kinderschuhen.

In Nature Reviews Chemistry gibt ein Team unter der Leitung von Dr. Prashanth Menezes (HZB) und Prof. Matthias Driess (Technische Universität Berlin) einen umfassenden Überblick über dieses spannende Forschungsgebiet. Sie erläutern die neuesten Methoden an Synchrotronquellen wie BESSY II, mit denen komplexe Reaktionen in Echtzeit und in situ analysiert werden können.

Überblick über aktuellen Wissensstand und neueste Methoden

Der Überblick umfasst eine Reihe von katalytischen Reaktionen, darunter die Oxygenierung von Alkoholen und Aldehyden, die Dehydrierung von Aminen, den Abbau von Harnstoff und Kupplungsreaktionen. Die Autoren stellen die nützlichsten Methoden vor, um Einblicke in die komplexen Reaktionsmechanismen zu gewinnen, darunter Röntgenabsorption, Raman- und Infrarotspektroskopie sowie differentielle elektrochemische Massenspektrometrie. In-situ-Methoden zeigen strukturelle Veränderungen im Katalysator auf, während Operando-Techniken sowohl die Struktur als auch die Aktivität unter realen Betriebsbedingungen überwachen. Diese Methoden können verwendet werden, um alle Arten von katalytischen oder chemischen Reaktionssystemen zu untersuchen und Einblicke in das Verhalten von Katalysatoren und Reaktionen unter Betriebsbedingungen zu gewinnen. Die Übersicht enthält auch ein Kapitel über Methoden des maschinellen Lernens zur Auswertung großer Datensätze.


„Diese Übersicht soll das Bewusstsein für dieses spannende Forschungsgebiet schärfen und Wissenschaftlerinnen und Wissenschaftler ermutigen, verschiedene Analysetechniken zu kombinieren. Dies wird das Verständnis heterogener katalytischer Reaktionen fördern und die Entwicklung effizienter Hybrid-Elektrokatalysatoren als nachhaltige grüne Chemietechnologie beschleunigen“, sagt Menezes.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.