Helmholtz-Nachwuchsgruppe zu Magnonen

Dr. Hebatalla Elnaggar baut am HZB eine Helmholtz-Forschungsgruppe auf. Sie wird an BESSY II so genannte Magnonen in magnetischen Perowskit-Dünnschichten erforschen. Damit will sie Grundlagen für eine neue, extrem energieeffiziente Informationstechnologie schaffen.  

Dr. Hebatalla Elnaggar baut am HZB eine Helmholtz-Forschungsgruppe auf. Sie wird an BESSY II so genannte Magnonen in magnetischen Perowskit-Dünnschichten erforschen. Damit will sie Grundlagen für eine neue, extrem energieeffiziente Informationstechnologie schaffen.   © HZB

Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

Die heutige Halbleitertechnologie basiert auf dem Transport von elektrisch geladenen Teilchen. Die dicht gepackten Halbleiterbauelemente auf Mikrochips erzeugen jedoch eine Menge unerwünschter Wärme, die mit großem Aufwand abgeführt werden muss. Der Energiebedarf der Informationstechnologie ist immens und steigt steil an.

Im Prinzip könnten Informationen aber auch ohne den Transport von Elektronen verarbeitet werden. Der Schlüssel dazu sind magnetische Muster, entweder die Spins geladener Teilchen (Spintronik) oder Spinwellen in magnetischen Materialien, so genannte Magnonen. Solche Magnonen können sich durch ein magnetisches Medium ausbreiten, ohne dass sich Teilchen bewegen, im Grunde reibungslos.

Dr. Hebatalla Elnaggar untersucht magnetische Dünnschichten mit einer Perowskit-Struktur, in denen Magnonen nachgewiesen werden können. Die Materialwissenschaftlerin hat an der Universität Utrecht in den Niederlanden promoviert und war bis vor kurzem als festangestellte Forscherin und Leiterin einer Arbeitsgruppe an der Universität Sorbonne und am CNRS in Paris tätig.

Seit Oktober 2025 baut sie eine eigene Helmholtz-Forschungsgruppe am HZB auf. "Mein Ziel passt sehr gut zur Mission des HZB, neue Materialien zu entdecken und Technologien für eine klimaneutrale Energiezukunft voranzutreiben. Außerdem ist das Umfeld für meine Forschungsfragen ideal. Hier habe ich Zugang zu BESSY II mit seinen hochmodernen spektroskopischen Instrumenten, Reinraumeinrichtungen und einem Hochleistungsrechner-Cluster", sagt sie.

Helmholtz Investigator Group: Multi-magnons: A platform for next generation THz magnons

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Nachricht
    05.12.2025
    Ernst-Eckhard-Koch-Preis und Innovationspreis Synchrotronstrahlung 2025
    Der Freundeskreis des HZB zeichnete auf dem 27. Nutzertreffen BESSY@HZB die Dissertation von Dr. Enggar Pramanto Wibowo (Friedrich-Alexander-Universität Erlangen-Nürnberg) aus.
    Darüber hinaus wurde der Europäische Innovationspreis Synchrotronstrahlung 2025 an Prof. Tim Salditt (Georg-August-Universität Göttingen) sowie an die Professoren Danny D. Jonigk und Maximilian Ackermann (beide, Universitätsklinikum der RWTH Aachen) verliehen. 
  • Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotron-strahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.