• Zhang, Z.; Su, Z.; Li, G.; Li, J.; Aldamasy, M.H.; Wu, J.; Wang, C.; Li, Z.; Gao, X.; Li, M.; Abate, A.: Improved Air Stability of Tin Halide Perovskite Solar Cells by an N-Type Active Moisture Barrier. Advanced Functional Materials 34 (2024), p. 2306458/1-9

10.1002/adfm.202306458
Open Access Version

Abstract:
Tin halide perovskite solar cells are promising for the next generation of highly efficient photovoltaics. Their commercialization can be accelerated by increasing their stability in moisture and oxygen. Herein, an n-type organic molecule (IO-4Cl) is applied as an interlayer between the perovskite films and electron transport layers in p-i-n structured devices. The electron-rich indacenodithieno-[3,2-b]thiophene enhances electron transport, while the hydrocarbon side chains and rigid conjugated backbone isolate air. It is also shown that the C═O in IO-4Cl can coordinate with Sn2+ on perovskite films' surface and grain boundaries to enhance perovskite crystal stability. In addition, IO-4Cl slows down crystallization dynamics, resulting in lower non-radiation recombination. The moisture ingress in the perovskite films is tracked under high relative humidity (RH) and it is found that IO-4Cl can mitigate moisture infiltration. Finally, the devices with IO-4Cl maintain 95% of the initial power conversion efficiency after 1200 h of storage in a nitrogen-filled glovebox, and their stability in ambient air (60–80% RH) is significantly improved against pristine devices, thus demonstrating the beneficial effects of IO-4Cl interlayer on device stability.