Katalase und Methämoglobin: so ähnlich und doch verschieden

Wichtige physiologische Prozesse beim Fettabbau und Sauerstofftransport aufgeklärt

Die Katalase ist eines der wichtigsten Enzyme im menschlichen Organismus und daher vielfach untersucht. Trotzdem war bislang nicht bekannt, warum das Protein, dessen aktives Zentrum ähnlich wie beim Methämoglobin aufgebaut ist, ein deutlich anderes Verhalten zeigt. Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben in Kooperation mit einem internationalen Wissenschaftlerteam dieses Rätsel gelöst. Sie publizieren die Ergebnisse in der online erscheinenden Ausgabe der Zeitschrift Physical Chemistry Chemical Physics (DOI: 10.1039/b924245g)

Anders als Methämoglobin spaltet das Enzym Katalase mit einer außerordentlich hohen Effektivität Abbauprodukte der Fettsäurespaltung (Wasserstoffper­oxid), und es schützt den Organismus gegen den Angriff von so genannten Oxidantien. Ein Katalase-Molekül kann in der Sekunde bis zu eine Million Wasserstoffperoxid-Moleküle spalten, wobei Wasser und Sauerstoff entstehen. Methämoglobin dagegen bindet Sauerstoff und transportiert ihn.

Emad Aziz und Kathrin Lange (HZB) haben die elektronische Struktur der Katalase und des Methämoglobins mithilfe der Röntgenabsorptionsspektroskopie am Elek­tronenspeicherring BESSY II untersucht und den Ursprung der hohen enzymatischen Aktivität der Katalase aufgeklärt. Normalerweise ist es nicht möglich, Proteine in ihrer natürlichen Umgebung, also in Flüssigkeiten, mit weicher Röntgenstrahlung zu analysieren. Man benötigt ein Vakuum und muss die Proteine kristallisieren. Aufschlüsse über ihre Reaktionsmechanismen und Aktivitäten im Körper bekommt man so jedoch nicht, da sich ein im Kristall geordnetes Protein anders verhält als in natürlicher Umgebung, wo es gelöst in einer Flüssigkeit vorliegt.

Emad Aziz hat deshalb eine spezielle Experimentierkammer am Synchrotronring BESSY II konstruiert und aufgebaut. Darin verwendet er eine Durchfluss­zelle mit einem dünnen Membran-Fenster. Die für Röntgenlicht durchlässige Membran trennt die gelösten Proteine von der Kammer mit dem Vakuum. Dadurch wird verhindert, dass die flüssige Probe in die Kammer gelangt und dadurch das Vakuum zusammenbricht. Indem man im Durchfluss ständig frische Probe zuführt, können Strahlenschäden durch die Röntgenstrahlung vermieden werden. Mit der Experimentierkammer ­– Liquidrom genannt ‑ hat Emad Aziz in einer früheren Arbeit bereits nachgewiesen, dass das aktive Zentrum des Methämoglobins, die Häm-Gruppe­, in natürlicher Umgebung eine deutlich andere elektronische Struktur hat als in der kristallisierten Form. Dies war die weltweit erste spektroskopische Untersuchung mit weicher Röntgenstrahlung an einem Protein in seiner natürlichen Umgebung, veröffentlicht im vergangenen Jahr in den Physical Review Letters (http://prl.aps.org/pdf/PRL/v102/i6/e068103).

Auch die Katalase verfügt über eine derartige Häm-Gruppe, die als aktives Zentrum wirkt. Emad Aziz und Kathrin Lange haben jedoch festgestellt, dass sich die elektronische Struktur der aktiven Zentren bei den beiden Enzymen unterscheidet. Im Methämoglobin liegt das zentrale Eisenion in der Oxidationsstufe +3 vor, das heißt, es ist dreifach positiv geladen. In der Katalase beobachtet man dagegen einen partiellen +4-Charakter. Dadurch ist das Ion sehr viel reaktiver. Zur Bedeutung dieser Erkenntnis sagt Kathrin Lange: „Dass wir die Ursache der hohen enzymatischen Aktivität der Katalase nun verstehen, ist ein enormer Fortschritt. Damit werden wir in Zukunft derartige Systeme steuern oder nachahmen können.“

Außerdem zeigt die Arbeit eindrucksvoll, dass das von Aziz konstruierte Liquidrom eine einzigartige Möglichkeit bietet, physiologische Prozesse mithilfe von Synchrotronstrahlung zu untersuchen. Der 31-jährige Leiter einer Nachwuchsgruppe plant bereits die nächsten Experimente, in denen er Proteine mit verschiedenen Liganden und während ihrer enzymatischen Aktivität untersuchen will.

  • Link kopieren

Das könnte Sie auch interessieren

  • Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Science Highlight
    01.12.2025
    Synchrotronstrahlungsquellen: Werkzeugkästen für Quantentechnologien
    Synchrotronstrahlungsquellen erzeugen hochbrillante Lichtpulse, von Infrarot bis zu harter Röntgenstrahlung, mit denen sich tiefe Einblicke in komplexe Materialien gewinnen lassen. Ein internationales Team hat nun im Fachjournal Advanced Functional Materials einen Überblick über Synchrotronmethoden für die Weiterentwicklung von Quantentechnologien veröffentlicht: Anhand konkreter Beispiele zeigen sie, wie diese einzigartigen Werkzeuge dazu beitragen können, das Potenzial von Quantentechnologien wie z. B. Quantencomputing zu erschließen, Produktionsbarrieren zu überwinden und den Weg für zukünftige Durchbrüche zu ebnen.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.