Wie sich Fußball-Moleküle unter Oberflächen schieben - HZB-Forscher beobachten atomare Vorgänge beim Dotieren von Halbleitermaterialien

Mikroskopische Aufnahme einer Graphenschicht auf Nickel-Substrat.<br />Auf dem Bild links, aufgenommen bei einer beliebigen Vorspannung<br />der Mikroskopspitze sieht man nur dunkle Streifen. Erst wenn<br />die Vorspannung spektroskopisch gezielt auf die C60-Molek&uuml;le<br />abgestimmt wird (rechts), werden die Molek&uuml;le unter der Graphen-<br />schichtals Ursache f&uuml;r das Streifenmuster sichtbar.

Mikroskopische Aufnahme einer Graphenschicht auf Nickel-Substrat.
Auf dem Bild links, aufgenommen bei einer beliebigen Vorspannung
der Mikroskopspitze sieht man nur dunkle Streifen. Erst wenn
die Vorspannung spektroskopisch gezielt auf die C60-Moleküle
abgestimmt wird (rechts), werden die Moleküle unter der Graphen-
schichtals Ursache für das Streifenmuster sichtbar.

Wie sich Fußball-Moleküle unter Oberflächen schieben

HZB-Forscher beobachten atomare Vorgänge beim Dotieren von Halbleitermaterialien

Fulleren und Graphen, die beiden noch nicht lange bekannten Formen des Kohlenstoffs regen seit ihrer Entdeckung (Fulleren 1970, Graphen 2004) die Phantasie der Forscher an. Insbesondere mit Graphen wollen sie ein neues Kapitel der Elektronik beginnen, da das Halbleitermaterial eines Tages das Schlüsselelement Silizium ablösen könnte. Dazu muss man Graphen  - das ist eine einzelne Atomschicht Graphit - mit Fremdatomen dotieren können. Und zwar so, dass die wichtigen Struktureigenschaften des Graphens erhalten bleiben. Wissenschaftler des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) berichten in der Online-Vorabveröffentlichung der Ausgabe vom 10. August der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201000695) über eine neue Mikroskopie-Technik. Mit ihr können sie zeigen, wie sich einzelne zum Dotieren verwendete Fulleren-Moleküle unter die Graphen-Schicht schieben, die zuvor auf einem Nickel-Substrat abgeschieden wurde.

Graphen ist der erste in zwei Dimensionen stabile Kristall, weil sich die Kohlenstoff-Atome in einer Honigwaben-Struktur aus Sechsecken anordnen. Beim Fulleren kommen noch einige Fünfecke hinzu, weshalb das aus 60 Kohlenstoff-Atomen bestehende Molekül auch als Fußball-Molekül bekannt geworden ist.
 
Andrei Varykhalov und seine Kollegen vom HZB haben aus Propylen per Gasphasenabscheidung eine dünne Lage Graphen auf einem Nickel-Substrat abgeschieden. Anschließend haben sie einzelne Fulleren-Moleküle zwischen die Nickel-Oberfläche und die Graphenschicht gebracht. Dies gelang durch rasches Erwärmen der Probe auf 400 Grad Celsius und anschließendes kurzes Ausglühen. Die entscheidende Technik, mit der sie das Dazwischenschieben – Interkalation genannt - der Fulleren-Moleküle beobachten konnten, war die Rastertunnelmikroskopie.

Bei dieser Messung wird eine elektrisch leitende Spitze Zeile für Zeile über die ebenfalls leitende Probenoberfläche gefahren. Spitze und Objektoberfläche berühren sich dabei nicht, so dass kein Strom fließt. Erst wenn die Mikroskopspitze der Probenoberfläche so nah kommt, dass nur wenige Nanometer dazwischen liegen, kommt es zum Tunneleffekt. Das heißt, Elektronen aus der Probenoberfläche und der Spitze treten in Austausch. Wird eine Spannung angelegt, fließt ein Tunnelstrom, der sehr empfindlich auf kleinste Abstandsänderungen reagiert.

Die HZB-Wissenschaftler konnten in ihrem Experiment die Rastertunnelmikroskopie so betreiben, dass ein deutlicher Kontrast entsteht, sobald die Spitze des Mikroskops die Fulleren-Moleküle unter der Graphen-Oberfläche wahrnimmt. Um die entscheidenden Parameter hierfür zu bekommen, haben sie die Probe am Speicherring BESSY II zunächst mit Synchrotronstrahlung untersucht.

„Mit unserem Abbildungsverfahren können wir ganz universell Interkalationsverbindungen visualisieren“, unterstreicht Andrei Varykhalov die Bedeutung der Experimente. Bei der Entwicklung der neuen Halbleitertechnologie ist ein solches Bildgebungsverfahren Voraussetzung, um neue Bauteile zu entwickeln.
Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Materialforschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Mag-netische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.
Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorganisation Deutschlands.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.