LiXEdrom: Neuartige Messkammer für Röntgen-Untersuchungen am Flüssigkeitsjet

Nahaufnahme des Liquid-Jet.

Nahaufnahme des Liquid-Jet.

Schematische Darstellung des LiXEdrom-Setups für <br /> Röntgenabsorptions- und Röntgenemissions- <br /> Spektroskopie am Liquid-Jet.

Schematische Darstellung des LiXEdrom-Setups für
Röntgenabsorptions- und Röntgenemissions-
Spektroskopie am Liquid-Jet.

Bisher waren weiche Röntgen-Emissionsmessungen (XES) an Flüssigkeiten nur durch Membranfenster möglich. Nun ist es Forschern am Helmholtz-Zentrum Berlin gelungen, XES am Synchrotron an einem freien Mikro-Flüssigkeitsstrahl durchzuführen.

Röntgenstrahlen sind für viele wissenschaftliche Untersuchungen das Mittel der Wahl. Wenn man eine Probe mit ihnen bestrahlt, holen sie viele Informationen zum Strukturaufbau des Stoffes ans Licht. Doch leider gilt dies in der Regel nur für Feststoffe, denn die Probe muss sich während der Bestrahlung mit weicher Röntgenstrahlung im Vakuum befinden. Für Flüssigkeiten bedeutet dies: das Wasser muss weg. Im Falle von biologischen Proben, zum Beispiel Proteinen, zerstört man damit aber zugleich deren Lebensraum. Die Lösung dieses Problems bestand bisher darin, Flüssigkeiten durch Membranen hindurch zu messen. Mit ihrer Hilfe wird die evakuierte von der nichtevakuierten Seite getrennt. Allerdings kann dabei nicht ausgeschlossen werden, dass Membraneffekte das Messergebnis verfälschen.

Am Helmholtz-Zentrum Berlin (HZB) hat Emad Aziz, Leiter einer Nachwuchsgruppe, gezeigt, dass Flüssigkeiten auch ohne Membran mit Röntgenemissionsspektroskopie untersucht werden können. An der Synchrotronquelle BESSY II hat die Gruppe dafür eine spezielle Anlage – das LiXEdrom – aufgebaut. Das Besondere dabei: die Flüssigkeit wird mithilfe eines Jets durch den Röntgenstrahl geschossen. Der Strahl wird in dem Jet so dünn und mit 80 Metern pro Sekunde so schnell, dass das Vakuum aufrecht erhalten werden kann und keine Membran notwendig ist.

„An unserem LiXEdrom erreichen wir in der Flüssigkeitskammer ein Vakuum von bis zu 10-6 Millibar und wir können nun sowohl Absorptions- als auch Emissionsmessungen durchführen, sodass wir noch genauere Informationen zum Strukturaufbau eines Stoffes bekommen“, sagt Emad Aziz. Außerdem sind nun auch die Elemente zugänglich, deren Absorptions- und Emissionsenergien ähnlich der Energiewerte von Mem­branmaterialien liegen, die sich bei Messungen mit Membran im Spektrum also überlappen würden. Mit Kohlenstoff und Stickstoff sind das genau die Elemente, die für biologische Proben wichtig sind.

Bei ihren ersten Messungen, publiziert in der Zeitschrift Chemical Physics (DOI: 10.1016/JChemPhys.2010.08.023) und zudem für deren Cover ausgewählt, konnte die Gruppe zeigen, dass sie mit ihrem LiXEdrom eine vergleichbare Energieauflösung erzielen können, wie die neusten High Resolution XES Spektrometer. Für Wasser konnten sie nachweisen, dass bisherige Ergebnisse nicht von störenden Membraneffekten überlagert werden. Des Weiteren untersuchten sie die elektronische Struktur von Nickel-Ionen frei von der Gefahr, dass Ablagerungen an der Membranwand das Ergebnis verfälschen. Für viele Anwendungen, etwa bei der Untersuchung von Proteinen, ist dies ein entscheidender Fortschritt, um verlässliche Aussagen zum Strukturaufbau zu bekommen.

Originalarbeit in Chem. Phys., DOI 10.1016/JChemPhys.2010.08.023
„High Resolution X-ray Emission Spectroscopy of Water and Aqueous Ions Using the Micro-Jet Technique”, K.M. Lange et al.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Nachricht
    17.06.2025
    MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Das schwedische Synchrotron-Labor MAX IV und die Synchrotronstrahlungsquelle BESSY II des Helmholtz-Zentrum Berlin (HZB) haben am 16. Juni ein fünfjähriges Memorandum of Understanding (MoU) unterzeichnet. Das MoU schafft einen Rahmen für eine verstärkte Zusammenarbeit bei der operativen und technologischen Entwicklung in den Bereichen Beschleunigerforschung und -entwicklung, Strahlführungen und Optik, Endstationen und Probenumgebungen sowie Digitalisierung und Datenwissenschaft.
  • Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.