Neues Mikroskop beleuchtet Ultrastruktur von Zellen

Der 3-D-Schnitt durch den Kern einer Adenokarzinom-Zelle<br />einer Maus zeigt den Nukleolus (NU) und die quer durch den Kern<br />verlaufenden Membrankanäle (NMC) mittels Röntgen-Nanotomo-<br />graphie.<br />Foto: HZB/Schneider

Der 3-D-Schnitt durch den Kern einer Adenokarzinom-Zelle
einer Maus zeigt den Nukleolus (NU) und die quer durch den Kern
verlaufenden Membrankanäle (NMC) mittels Röntgen-Nanotomo-
graphie.
Foto: HZB/Schneider

Herkömmliche TEM-Aufnahme eines gefärbten Dünnschnitts.<br />Foto: HZB/Schneider

Herkömmliche TEM-Aufnahme eines gefärbten Dünnschnitts.
Foto: HZB/Schneider

HZB-Forscher können kleinste Zellbestandteile in ihrer natürlichen Umgebung sichtbar machen – die Zelle bleibt intakt

Forscher des Helmholtz-Zentrum Berlin (HZB) haben ein neues Mikroskop für die Röntgen-Nanotomographie entwickelt. Mit diesem können sie die Struktur kleinster Bestandteile von Säugetierzellen dreidimensional darstellen. Zum ersten Mal wird die Zelle, um sie zu untersuchen, nicht chemisch fixiert, eingefärbt oder zerschnitten. Stattdessen wird sie intakt tiefgefroren und in ihrer natürlichen Umgebung erforscht. Das neue Verfahren liefert sofort ein 3-D-Bild und schließt so eine Lücke zwischen herkömmlichen Mikroskopie-Verfahren.

Das neue Mikroskop liefert ein hochaufgelöstes 3-D-Bild der gesamten Zelle in einem Schritt. Dies ist ein Vorteil gegenüber der Elektronenmikroskopie, bei der ein 3-D-Bild aus vielen Dünnschnitten zusammengestellt wird. Dies kann mehrere Wochen pro Zelle dauern. Anders als bei der Fluoreszenz-Mikroskopie wird die Zelle auch nicht mit Farbstoffen markiert, wobei immer nur die markierten Strukturen dargestellt werden. Das neue Röntgenmikroskop nutzt vielmehr den natürlichen Kontrast zwischen organischer Materie und Wasser, um alle Zellstrukturen abzubilden. Dr. Gerd Schneider und sein Mikroskopie-Team am Institut für Weiche Materie und Funktionale Materialien publi­zieren ihre Entwicklung in der Zeitschrift Nature Methods (DOI:10.1038/nmeth.1533).

Mit der hohen Auflösung, die das Mikroskop erreicht, konnten die Wissen­schaftler in Zusammenarbeit mit Kollegen des amerikanischen National Cancer Instituts Zellbestandteile eines Adenokarzinoms bei Mäusen dreidimensional rekonstruieren. Kleinste Details wurden sichtbar: die Doppelmembran des Zell­kerns, Kernporen in der Zellkernhülle, Membrankanäle im Zellkern, innere Aus­stülpungen der Mitochondrien und Einschlüsse in Zellorganellen wie Lyso­so­men. Solche Einblicke sind nützlich, um innerzelluläre Vorgänge zu beleuch­ten: beispielsweise wie Viren oder Nanopartikel in Zellen oder in den Zellkern eindringen.

Damit gelang es zum ersten Mal, mit Röntgenstrahlung die sogenannte Ultra­struktur von Zellen bis auf 30 Nanometer genau abzubilden. Zehn Nanometer entsprechen ungefähr einem Zehntausendstel der Stärke eines menschlichen Haares. Der Begriff Ultrastruktur verdeutlicht, dass es sich um kleinste Zell­bestandteile handelt.

Die hohe 3-D-Auflösung erreichen die Forscher, indem sie die tiefgefrorenen Objektstrukturen mit teilkohärentem Licht beleuchten. Dieses wird von BESSY II, der Synchrotronquelle des HZB erzeugt. Teilkohärenz ist die Fähigkeit von Lichtbündeln, sich gegenseitig zu überlagern. Durch die Ausleuchtung der Proben mit teilkohärentem Licht werden die Objektkontraste für sehr kleine Strukturen deutlich größer als mit inkohärentem Licht. Kombiniert mit einer hochauflösenden Optik, konnten die Forscher die Feinstrukturen der Zellen mit einem bisher unerreicht hohen Kontrast darstellen.

Das neue Röntgenmikroskop bietet außerdem mehr Raum rund um die Probe, was zu einer besseren räumlichen Betrachtung führt. Der Raum war bisher durch die Art der Ausleuchtung stark eingeschränkt, weil das notwendige monochromatische Röntgenlicht mit Hilfe eines radialen Gitters erzeugt wurde. Eine Blende selektierte aus diesem Licht den gewünschten Bereich der Lichtwellen. Sie war so dicht vor der Probe platziert, dass man die Probe kaum drehen konnte. Diesen Aufbau haben die Forscher geändert. Ein neuartiger Kondensor, der das Objekt beleuchtet, wird nun direkt mit monochromatischem Licht bestrahlt, die Blende entfällt. So lässt sich die Probe bis zu 158 Grad drehen und räumlich betrachten.

Mit diesen Entwicklungen steht der modernen Strukturbiologie ein neues Werkzeug zum besseren Verständnis des Aufbaus von Zellen zur Verfügung.

Franziska Rott

  • Link kopieren

Das könnte Sie auch interessieren

  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.