Terahertzblitze ermöglichen exakte Röntgenmessungen

Die Wissenschaftler trennen mit Hilfe eines Spiegels den<br />R&ouml;ntgenpuls (blau) vom Terahertzpuls (rot). Der R&ouml;ntgenblitz<br />tritt dabei durch ein zehn Millimeter kleines &bdquo;Loch&ldquo; in der<br />Mitte des Spiegels hindurch.

Die Wissenschaftler trennen mit Hilfe eines Spiegels den
Röntgenpuls (blau) vom Terahertzpuls (rot). Der Röntgenblitz
tritt dabei durch ein zehn Millimeter kleines „Loch“ in der
Mitte des Spiegels hindurch. © HZB/DESY

Gemeinsame Pressemitteilung des Helmholtz-Zentrums Berlin, des Forschungszentrums DESY und der European XFEL GmbH

Wissenschaftler entwickeln eine Methode, um Prozesse mit hochintensiven ultrakurzen Röntgenpulsen bis auf wenige Femtosekunden genau zu untersuchen

Viele physikalische und chemische Vorgänge laufen in extrem kurzer Zeit und auf extrem kleinen Längenskalen ab, in der Regel in Zeiten von billiardstel Sekunden und auf Längen von milliardstel Metern. Um solche Phänomene zu untersuchen, nutzen Forscher intensive ultrakurze Röntgenblitze. Denn aus der Fotografie weiß man: Je schneller ein Vorgang abläuft, desto kürzer muss die Belichtung sein, die diesen sichtbar macht.

Forscher erzeugen solche intensiven, ultrakurzen Röntgenblitze in großen Forschungsanlagen, sogenannten Freie-Elektronen-Lasern. Eine in Hamburg und Berlin entwickelte neue Methode ermöglicht es nun die Zeitauflösung dieser Großgeräte voll auszureizen. Die Forschergruppe von DESY, HZB, der European XFEL GmbH und  des Helmholtz-Institut Jena stellt ihre Ergebnisse in der aktuellen online-Ausgabe von „Nature Photonics“ (DOI: 10.1038/NPHOTON.2010.311) vor.

Röntgenblitze zu erzeugen, die nur wenige Femtosekunden (Millardster Teil einer millonstel Sekunde) lang sind, ist seit einigen Jahren möglich. Sie können beispielsweise von Freie-Elektronen-Lasern (FEL) wie FLASH am Forschungszentrum DESY in Hamburg, LCLS in Stanford (USA) oder dem im Bau befindlichen Röntgenlaser European XFEL erzeugt werden. Tatsächliche Experimente waren aber bislang nur mit einer Auflösung von typischerweise etwa hundert Femtosekunden möglich – also zwei Größenordnungen schlechter als die erzielten Pulsdauern. Das Problem war, genau zu bestimmen, wann die Röntgenpulse im Experiment ankommen.

Eine Gruppe aus Wissenschaftlern des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB), des DESY, der European XFEL GmbH und des Helmholtz-Institut Jena hat nun einen Weg gefunden, die Ankunftszeit von Röntgenpulsen mit einer Genauigkeit von weniger als zehn Femtosekunden zu messen. Die Methode basiert auf einer sogenannten Kreuzkorrelation.

Die neue Methode wurde am Freie-Elektronen-Laser FLASH für sogenannte „Pump-Probe“-Verfahren entwickelt. Dabei löst ein erster ultrakurzer Pump-Puls beispielsweise eine photochemische Reaktion aus. Ein zweiter Puls aus Röntgenlicht „fotografiert“, wie sich die Reaktion entwickelt. Forscher können nun genau bestimmen, zu welchem Zeitpunkt das Bild durch den zweiten Puls entsteht.

Die Wissenschaftler nutzen bei ihrer neuen Methode hierfür einen Nebeneffekt der Röntgenpulserzeugung: Das in FLASH beschleunigte Elektronenpaket sendet, neben dem Röntgenblitz, gleichzeitig einen intensiven Terahertzblitz aus. Die Wissenschaftler trennen beide Blitze mit Hilfe eines gelochten goldbeschichteten Spiegels voneinander. Da beide Pulse zur gleichen Zeit und vom gleichen Elektronenpaket erzeugt werden, dient der Terahertzblitz als zeitlicher „Marker“ des Röntgenlichtblitzes, der als Zeitreferenz genutzt wird. So gelang es den Forschern, bis auf sieben Femtosekunden genau zu bestimmen, wann der Röntgenlichtblitz die Probe erreicht.

Die neue Methode kann nun mit sehr geringen Modifikationen an allen bestehenden und geplanten neuen FEL-Quellen angewendet werden. In Kombination mit entsprechenden Experimenten eröffnet sie die Möglichkeit, das Potenzial dieser Großgeräte voll auszuschöpfen. Erstmals können Phänomene nun auf der relevanten Femtosekunden-Zeitskala mit Röntgenpulsen untersucht werden. Darauf haben Wissenschaftler lange gewartet.

Dr. Michael Gensch, der die Arbeiten federführend am HZB und bei DESY betreut hat, ist mittlerweile am Helmholtz-Zentrum Dresden-Rossendorf (HZDR) tätig. Er baut dort an der Strahlungsquelle ELBE neue Experimente mit hochintensiver Terahertz-Strahlung auf.

Dr. Michael Gensch
Helmholtz-Zentrum Dresden-Rossendorf
Institute of Radiation Physics/Institute of Ion Beam Physics and Materials Research

m.gensch@hzdr.de, Tel: +49 351 260 2464

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.