Synchrotronlicht in bisher unerreichter Qualität: „Wichtiger Schritt auf dem Weg zu einem stabilen Freie Elektronen Laser“

Dr. Johannes Bahrdt

Dr. Johannes Bahrdt

 

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben in Kooperation mit der schwedischen Universität Lund Synchrotronlicht von bisher unerreichter Qualität erzeugt: Weltweit erstmalig gelang es ihnen, kohärente Lichtpulse im extremen vakuum-ultravioletten Spektralbereich zu generieren (66nm), die nur 200 Femtosekunden lang sind und die eine variable Polarisation aufweisen. „Wir haben damit einen wichtigen Schritt auf dem Weg zu einem stabilen Freie Elektronen Laser vollzogen“, sagt Dr. Johannes Bahrdt, Leiter der HZB-Abteilung „Undulatoren“.

Das von Johannes Bahrdt und seinen Kollegen realisierte Prinzip: Die wünschenswerten Eigenschaften eines kommerziellen Lasers langer Wellenlänge – des sogenannten Seed-Lasers – werden auf einen Lichtpuls im vakuum-ultravioletten Spektralbereich übertragen, wo es Lichtquellen mit gleichen Eigenschaften nicht gibt. Dafür wird der Elektronenstrahl des Injektor-Beschleunigers an der Synchrotronstrahlungsquelle MAX-lab in Lund, Schweden, in einer speziellen Magnetstruktur, dem Modulator, mit dem Seed-Laser überlagert. Seed-Laser und Elektronenstrahl treten im Modulator in Wechselwirkung, wodurch die Elektronenpakete verändert werden. Sie erfahren eine räumlich periodische Energiemodulation auf der Skala der Wellenlänge des Seed-Lasers. Anschließend durchfliegen die Pakete eine Schikane, eine dispersive Strecke, in der die Energiemodulation in eine Dichte-Modulation umgewandelt wird.

Die Elektronenpakete weisen danach in ihrem Inneren eine Mikrostruktur auf und werden in die nächste Magnetstruktur geschickt. Dieser so genannte Radiator nutzt die mikrostrukturierten Elektronenpakete und emittiert kohärentes Licht auf der Wellenlänge oder auf einer höheren Harmonischen der Mikrostrukturierung. Eine neue Klasse von Freien Elektronen Lasern (FELs), die sogenannten HGHG-FELs (z.B. der im Bau befindliche FEL FERMI in Trieste, Italien), beruhen auf diesem Prinzip und gelten wegen ihrer guten Strahleigenschaften als FELs der nächsten Generation. „Unser Radiator bietet durch seine spezielle Magnetstruktur die Möglichkeit, den Polarisationszustand des Lichtes frei zu definieren. Damit lässt sich sowohl linear polarisiertes Licht unterschiedlicher Orientierung als auch zirkular polarisiertes Licht mit frei wählbarem Drehsinn einstellen“, erklärt Johannes Bahrdt: „Uns ist es erstmals gelungen, mit dieser Methode an einem Linearbeschleuniger (Linac) zirkulare Strahlung zu erzeugen.“ Dies ist ein wichtiger Schritt bei der Weiterentwicklung von Linac-basierten Freie-Elektronen-Lasern, die bisher nur linear polarisiertes Licht produzieren.

Das Experiment wurde im Rahmen des EuroFEL Design Project aufgebaut und wird in einer Kollaboration von HZB und MAX-lab betrieben. Ziel ist es, FELs hinsichtlich Zeitverhalten, Kohärenz, Polarisation und spektraler Reinheit zu optimieren sowie die dafür notwendige Einzel-Puls-Diagnostik zu entwickeln. Die Undulatorabteilung des HZB hat dafür das komplette Undulatorsystem entwickelt und installiert sowie Glasfasersysteme zur Elektronenstrahldiagnostik bereitgestellt. Das Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung hat eine Terahertz-Detektion zur Optimierung der Bunchkompression beigesteuert. Wissenschaftler aus beiden HZB-Einheiten waren in den letzten Jahren während der Inbetriebnahmezeiten der Anlage in Schweden.

HS

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.