Synchrotronlicht in bisher unerreichter Qualität: „Wichtiger Schritt auf dem Weg zu einem stabilen Freie Elektronen Laser“

Dr. Johannes Bahrdt

Dr. Johannes Bahrdt

 

Wissenschaftler des Helmholtz-Zentrum Berlin (HZB) haben in Kooperation mit der schwedischen Universität Lund Synchrotronlicht von bisher unerreichter Qualität erzeugt: Weltweit erstmalig gelang es ihnen, kohärente Lichtpulse im extremen vakuum-ultravioletten Spektralbereich zu generieren (66nm), die nur 200 Femtosekunden lang sind und die eine variable Polarisation aufweisen. „Wir haben damit einen wichtigen Schritt auf dem Weg zu einem stabilen Freie Elektronen Laser vollzogen“, sagt Dr. Johannes Bahrdt, Leiter der HZB-Abteilung „Undulatoren“.

Das von Johannes Bahrdt und seinen Kollegen realisierte Prinzip: Die wünschenswerten Eigenschaften eines kommerziellen Lasers langer Wellenlänge – des sogenannten Seed-Lasers – werden auf einen Lichtpuls im vakuum-ultravioletten Spektralbereich übertragen, wo es Lichtquellen mit gleichen Eigenschaften nicht gibt. Dafür wird der Elektronenstrahl des Injektor-Beschleunigers an der Synchrotronstrahlungsquelle MAX-lab in Lund, Schweden, in einer speziellen Magnetstruktur, dem Modulator, mit dem Seed-Laser überlagert. Seed-Laser und Elektronenstrahl treten im Modulator in Wechselwirkung, wodurch die Elektronenpakete verändert werden. Sie erfahren eine räumlich periodische Energiemodulation auf der Skala der Wellenlänge des Seed-Lasers. Anschließend durchfliegen die Pakete eine Schikane, eine dispersive Strecke, in der die Energiemodulation in eine Dichte-Modulation umgewandelt wird.

Die Elektronenpakete weisen danach in ihrem Inneren eine Mikrostruktur auf und werden in die nächste Magnetstruktur geschickt. Dieser so genannte Radiator nutzt die mikrostrukturierten Elektronenpakete und emittiert kohärentes Licht auf der Wellenlänge oder auf einer höheren Harmonischen der Mikrostrukturierung. Eine neue Klasse von Freien Elektronen Lasern (FELs), die sogenannten HGHG-FELs (z.B. der im Bau befindliche FEL FERMI in Trieste, Italien), beruhen auf diesem Prinzip und gelten wegen ihrer guten Strahleigenschaften als FELs der nächsten Generation. „Unser Radiator bietet durch seine spezielle Magnetstruktur die Möglichkeit, den Polarisationszustand des Lichtes frei zu definieren. Damit lässt sich sowohl linear polarisiertes Licht unterschiedlicher Orientierung als auch zirkular polarisiertes Licht mit frei wählbarem Drehsinn einstellen“, erklärt Johannes Bahrdt: „Uns ist es erstmals gelungen, mit dieser Methode an einem Linearbeschleuniger (Linac) zirkulare Strahlung zu erzeugen.“ Dies ist ein wichtiger Schritt bei der Weiterentwicklung von Linac-basierten Freie-Elektronen-Lasern, die bisher nur linear polarisiertes Licht produzieren.

Das Experiment wurde im Rahmen des EuroFEL Design Project aufgebaut und wird in einer Kollaboration von HZB und MAX-lab betrieben. Ziel ist es, FELs hinsichtlich Zeitverhalten, Kohärenz, Polarisation und spektraler Reinheit zu optimieren sowie die dafür notwendige Einzel-Puls-Diagnostik zu entwickeln. Die Undulatorabteilung des HZB hat dafür das komplette Undulatorsystem entwickelt und installiert sowie Glasfasersysteme zur Elektronenstrahldiagnostik bereitgestellt. Das Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung hat eine Terahertz-Detektion zur Optimierung der Bunchkompression beigesteuert. Wissenschaftler aus beiden HZB-Einheiten waren in den letzten Jahren während der Inbetriebnahmezeiten der Anlage in Schweden.

HS

  • Copy link

You might also be interested in

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.