Durchbruch in der Röntgen-Nanospektroskopie

Schematische Darstellung der mit R&ouml;ntgenlicht verschiedener<br />Photonenenergien durch einen Kapillar-Kondensor beleuchteten<br />zu untersuchenden Titanoxid-St&auml;bchen. Ein hochaufl&ouml;sendes<br />Objektiv &ndash; hier nicht dargestellt &ndash; bildet dann diese Objekte ab.<br />Quelle: HZB

Schematische Darstellung der mit Röntgenlicht verschiedener
Photonenenergien durch einen Kapillar-Kondensor beleuchteten
zu untersuchenden Titanoxid-Stäbchen. Ein hochauflösendes
Objektiv – hier nicht dargestellt – bildet dann diese Objekte ab.
Quelle: HZB

HZB-Forscher ermöglichen Röntgenspektroskopie mit räumlicher Auflösung im Nanometerbereich

Forscher des Helmholtz-Zentrum Berlin (HZB) haben ein neues Mikroskop entwickelt, das röntgenspektroskopische Untersuchungen mit hoher räumlicher Auflösung ermöglicht. Das Mikroskop an der Synchrotronquelle BESSY II des HZB nutzt dafür brillante Röntgenstrahlung.

Mit den konventionellen Röntgenspektroskopie-Methoden konnten bisher keine einzelnen Nanoteilchen studiert werden. Ein wesentliches Ziel bei der Untersuchung von Nanostrukturen oder Nanopartikeln ist jedoch die Bestimmung ihrer Größe und ihrer elektronischen Eigenschaften. Um die notwendige Ortsauflösung im Nanometerbereich zu erhalten, müssen die Strukturen mit Röntgenstrahlung von hoher spektraler Auflösung beleuchtet und mit einem Röntgenobjektiv auf einem Detektor abgebildet werden. Das neue Verfahren haben Dr. Peter Guttmann und das Mikroskopie-Team von PD Dr. Gerd Schneider am HZB-Institut für Weiche Materie und Funktionale Materialien jetzt in der Zeitschrift Nature Photonics publiziert:

  • Flash: http://content.yudu.com/A1vo3s/Nanotimes01-2012/
  • Plain text version live at: http://content.yudu.com/A1vo3s/Nanotimes01-2012/resources/plainText.htm
  • PDF (97 pages, 16Mb): http://www.nano-times.com/files/nanotimes_12_01.pdf

Das große Interesse an den elektronischen Eigenschaften von Nano-Strukturen, die in verschiedenster Weise funktionalisiert werden können, ist in deren möglicher Anwendbarkeit als aktives Material mit großer Oberfläche in kleinem Volumen begründet. Ihr Einsatz ist beispielsweise in Lithium-Ionen-Batterien, in der Photokatalyse zur Herstellung von Wasserstoff als Energieträger oder in Solarzellen denkbar. Mit dem HZB-Mikroskop steht ein neues und attraktives Werkzeug für die Materialwissenschaften und insbesondere auch die Energieforschung zur Verfügung.

Mit der Methode ist es möglich, Nanopartikel in Objektfeldern von bis zu 20 x 20 µm2 gleichzeitig mit einer CCD-Kamera aufzunehmen. In den Objektfeldern finden sich sehr viele der zu untersuchenden Strukturen. Die Forscher erhalten räumlich hochaufgelöste Bilddatensätze mit spektraler Information, indem sie Bilddaten über einen gewählten Energiebereich mit sehr kleinen Energieschritten aufnehmen. Auf diese Weise kann von jedem einzelnen Partikel bzw. von Teilbereichen der Nanostruktur ein Spektrum gewonnen werden. Diese so genannten NEXAFS-Spektren lassen eine Aussage über die elektronische Struktur zu, also letztlich die Anordnung der einzelnen Atome in dem Nano-Partikel. Anders als bei Raster-Röntgenmikroskopie, bei der mit jeder Aufnahme lediglich das Spektrum eines einzelnen Nanopartikels vermessen wird, enthält ein Datensatz bei der neuen Methode bereits statistische Aussagekraft – in ihm sind die Spektren einer großen Zahl von Partikeln enthalten.

„Ein wichtiger Vorteil unseres Mikroskops ist der Zeitgewinn bei gleichzeitig verbesserter spektraler Auflösung von 10.000“, sagt Dr. Peter Guttmann, Physiker am HZB: „Gegenüber den bisher dafür benutzten Raster-Röntgenmikroskopen erlaubt unser Mikroskop eine um den Faktor 100 schnellere Aufnahme von Spektren in großen Objektfeldern. Mit Hilfe des HZB-Elektronenstrahlschreibers können weiterentwickelte Optiken hergestellt werden, um unsere Methode von derzeit 25 nm auf eine Ortsauflösung von 10 nm zu verbessern“.

Mit der hohen räumlichen und spektralen Auflösung, die das Mikroskop erreicht, konnten die Wissenschaftler in Zusammenarbeit mit Co-Autoren aus Belgien, Frankreich und Slowenien die Struktur von speziell aufgebauten Nano-Stäbchen aus Titandioxid untersuchen. Die jetzt vorgestellten Untersuchungen an Nano-Stäbchen erfolgten in einer europäischen Zusammenarbeit im Rahmen der COST action MP0901(NanoTP).

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.