Under cover of graphene

Phoenex-Apparatus<br />

Phoenex-Apparatus
© HZB

Researchers at Helmholtz-Zentrum Berlin have developed a method to conserve electronic surface states using graphene.

Scientists at Helmholtz-Zentrum Berlin (HZB), together with colleagues from Dresden and Jülich, have succeeded in making the electronic surface-state of a metal extra-durable. To this end, they seal the surface of the metal iridium with a layer of carbon that has the thickness of a single atom. This modification of carbon known as graphene proves to be an efficient shield against outside influences. This ability to preserve the  electronic surface-state is of paramount interest for spintronics. The HZB scientists have published their findings today in the journal "Physical Review Letters" (DOI: 10.1103/PhysRevLett.108.066804).

Spintronics employs the magnetic moment - the spin - of electrons in order to process information. Surfaces are particularly well suited for distinguishing electrons with different spin, due to what physicists call a "broken symmetry". The electrons at the surface, on the other hand, are extremely active and easily form a chemical bond, with oxygen for example. Therefore, it has only been possible to preserve a particular spin state under extreme conditions, e.g. ultrahigh vacuum.

In their successful experiments to conserve the electronic surface structure, HZB researchers tested the metal iridium. "We treated the metal catalytically with propylene gas, a hydrocarbon" says project leader Dr. Andrei Varykhalov from the HZB department for magnetization dynamics. The surface allows for two competing reactions, explains Varykhalov, of which the graphenization wins out. "In this way, a single layer of carbon atoms forms on the iridium."

HZB researchers  studied this graphene layer as well as the spin states of the top layer of the metal with sophisticated analytical methods at the electron storage ring BESSY II. Their instrument contains an apparatus from particle physics, a so-called spin detector.

"At first, we were able to demonstrate that the spin states of the iridium do not change under the gaphene layer. This was in agreement with model calculations made by researchers in Jülich" Varykhalov explains. "In a second step we found that they also persist in the air". This is considered an important progress for spintronics. Varykhalov: "Our graphene-covered iridium is still a model system for research. If we succeed with graphene to also conserve the spin states of an insulator, we can bring realistic applications for spintronics within reach."

HS

  • Copy link

You might also be interested in

  • Battery research: visualisation of aging processes operando
    Science Highlight
    29.04.2025
    Battery research: visualisation of aging processes operando
    Lithium button cells with electrodes made of nickel-manganese-cobalt oxides (NMC) are very powerful. Unfortunately, their capacity decreases over time. Now, for the first time, a team has used a non-destructive method to observe how the elemental composition of the individual layers in a button cell changes during charging cycles. The study, now published in the journal Small, involved teams from the Physikalisch-Technische Bundesanstalt (PTB), the University of Münster, researchers from the SyncLab research group at HZB and the BLiX laboratory at the Technical University of Berlin. Measurements were carried out in the BLiX laboratory and at the BESSY II synchrotron radiation source.
  • New instrument at BESSY II: The OÆSE endstation in EMIL
    Science Highlight
    23.04.2025
    New instrument at BESSY II: The OÆSE endstation in EMIL
    A new instrument is now available at BESSY II for investigating catalyst materials, battery electrodes and other energy devices under operating conditions: the Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) endstation in the Energy Materials In-situ Laboratory Berlin (EMIL). A team led by Raul Garcia-Diez and Marcus Bär showcases the instrument’s capabilities via a proof-of-concept study on electrodeposited copper.
  • Green hydrogen: A cage structured material transforms into a performant catalyst
    Science Highlight
    17.04.2025
    Green hydrogen: A cage structured material transforms into a performant catalyst
    Clathrates are characterised by a complex cage structure that provides space for guest ions too. Now, for the first time, a team has investigated the suitability of clathrates as catalysts for electrolytic hydrogen production with impressive results: the clathrate sample was even more efficient and robust than currently used nickel-based catalysts. They also found a reason for this enhanced performance. Measurements at BESSY II showed that the clathrates undergo structural changes during the catalytic reaction: the three-dimensional cage structure decays into ultra-thin nanosheets that allow maximum contact with active catalytic centres. The study has been published in the journal ‘Angewandte Chemie’.