Mit ILGAR auf Rekordjagd

Eine Chalcopyrit-Dünnschicht-Solarzelle auf dem<br />Sonnensimulator-Teststand.<br />©HZB

Eine Chalcopyrit-Dünnschicht-Solarzelle auf dem
Sonnensimulator-Teststand.
©HZB

HZB-Wissenschaftler bekommen gleich zwei Wirkungsgrad-Rekorde für CIS-Dünnfilm-Solarmodule bestätigt

Der Bedarf an erneuerbaren Energien steigt – Klimawandel und Krise der Atomkraft treiben die Entwicklung an. Im Photovoltaikmarkt spielen CIS-Dünnfilm-Solarmodule eine immer größere Rolle. In ihnen werden Halbleiter eingesetzt – meist Kupfer-Verbindungen – so genannte Chalkopyrite – um aus Sonnenlicht Strom zu gewinnen. Das Institut „Heterogene Materialsysteme“ des Helmholtz-Zentrum Berlin (HZB) hat jetzt gleich zwei Rekord-Wirkungsgrade für solche Solarzellen vom unabhängigen Institut für Solare Energiesysteme (ISE) in Freiburg bestätigt bekommen. Das Besondere: Die so genannte Pufferschicht der Solarzellen ist mit dem umweltfreundlichen, am HZB entwickelten Herstellungsverfahren ILGAR entstanden. Das normalerweise genutzte Schwermetall Cadmium kommt dabei nicht zum Einsatz.

Für alle Komponenten von Dünnfilm-Solarmodulen existieren technologisch günstige Produktionsprozesse – bis vor kurzem jedoch nicht für die Pufferschicht. Das Standard-Material für diese Komponente ist das giftige Cadmium-Sulfid. Das am HZB entwickelte ILGAR-Verfahren (Ion Layer Gas Reaction) hat hier Abhilfe geschaffen: Mit ihm lassen sich in standardisierten Prozessen Halbleiterschichten höchster Qualität für Dünnschichtsolarzellen herstellen. Die dabei produzierten Pufferschichten aus Indiumsulfid oder Zinksulfid/Indiumsulfid ersetzen in Dünnschichtsolarzellen nicht nur das giftige Cadmium. ILGAR macht auch ein Abscheideverfahren überflüssig: das als „Chemical Bath Deposition“ bezeichnete Verfahren, das als langsam und umweltschädlich gilt.

Für ihre Rekordzellen haben die HZB-Wissenschaftler Absorber – also lichtabsorbierende Schichten – genutzt, die standardmäßig in der Industrie im Einsatz sind. Damit wurden ihnen gleich zwei Solarzell-Wirkungsgrade bestätigt. 16,1 Prozent wurden für Zellen erreicht, die mit ILGAR-Indiumsulfid-Pufferschichten (In2S3) auf Bosch CIS Tech Cu(In,Ga)(S,Se)2-Absorbern hergestellt wurden (in-house Messung direkt nach Herstellung 16.8%). Für den Puffer war die HZB-Wissenschaftlerin Johanna Krammer verantwortlich. Sie konnte dabei auf umfangreiche Vorarbeiten der gesamten ILGAR-Gruppe zurückgreifen. Auf seiten der Firma Bosch sind Dr. A. Jasenek und Dr. F. Hergert zu nennen.

Auf Zellen mit Absorbern der Firma AVANCIS konnten die Wissenschaftler bei eigenen Messungen Zell-Wirkungsgrade von 16.4 Prozent feststellen. Gemeinsam mit dem Maschinenbauer Singulus-Stangl Solar wurde ein industrieller Prototyp eines ILGAR in-line-Beschichters entwickelt. Hiermit wurden im HZB bereits In2S3-Puffer mit einer Geschwindigkeit von 10 Millimeter pro Sekunde abgeschieden. Die resultierenden 30x30 Quadratzentimeter Solarmodule auf der Basis von AVANCIS Absorberschichten zeigten mit 13.7 Prozent eine gleichwertige Effizienz wie die mit Cadmiumsulfid gepufferten Referenzmodule.

Im Juni 2011 ist das ILGAR-Team um Professor Dr. Christian-Herbert Fischer auf der Clean Technology Conference & Expo in Boston, USA, für sein patentiertes ILGAR-Verfahren als einer von vier GERMAN HIGH TECH CHAMPIONS im Wettbewerb der Fraunhofer-Gesellschaft ausgezeichnet worden.

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.