Photochemischer Energieturbo für Solarzellen

Rotes Licht eines Laserpointers wird beim Durchgang durch<br />die Fl&uuml;ssigkeit des photochemischen Hochkonverters in<br />energiereiches gelbes Licht umgewandelt.<br />Quelle: University of Sydney, Australien

Rotes Licht eines Laserpointers wird beim Durchgang durch
die Flüssigkeit des photochemischen Hochkonverters in
energiereiches gelbes Licht umgewandelt.
Quelle: University of Sydney, Australien

Wie organische Moleküle aus rotem Licht gelbes machen.

Moderne Silizium-Solarzellen haben einen maximalen Wirkungsgrad von etwa 25 Prozent. Weltweit liefern sich Forscher ein Rennen, diesen Wirkungsgrad immer weiter zu erhöhen. Eine natürliche Grenze liegt jedoch bei etwa 30 Prozent, weil Solarzellen aufgrund physikalischer Gesetze Licht mit Energien unterhalb einer materialspezifischen Grenze nicht absorbieren können. Die Energie dieses Lichts geht verloren, wird nicht in Strom umgesetzt. Wissenschaftler der Universität Sydney und des Helmholtz-Zentrum Berlin (HZB) haben jetzt in Laborversuchen beispielhaft demonstriert, wie diese Verluste vermieden werden können.

Sie haben eine Art „Turbo für Solarzellen“ entwickelt, die so genannte photochemische Hochkonversion: Zwei energiearme Photonen, die eigentlich in der Solarzelle wirkungslos bleiben, werden dabei zu einem energiereichen Photon gebündelt – das anschließend einen Beitrag zur Stromgewinnung leisten kann. Weitere Forschung in diese Richtung kann es möglich machen, die 30 Prozent-Marke zu überbieten. Seine Ergebnisse hat das Team jetzt in der Fachzeitschrift „Energy & Environmental Science“ veröffentlicht (DOI: 10.1039/C2EE21136J).

Der photochemische Solarzellenturbo nutzt organische Moleküle, um energiearme rote Photonen miteinander zu energiereicheren gelben Photonen zu verschmelzen. Der Clou liegt in der Auswahl der Moleküle, von denen sich zwei verschiedene Typen hinter der Solarzelle in einem Lösungsmittel befinden. Der erste Molekültyp hat die Aufgabe, die energiearmen Lichtteilchen zu absorbieren und ihre Energie zu speichern. Dabei spielt ein langlebiger Zustand der Moleküle die Hauptrolle: In ihm sind die Spins - also die magnetischen Momente der lichtangeregten Elektronen des Moleküls - parallel ausgerichtet. Dies verhindert die Wiederaussendung oder Re-Emission des absorbierten Teilchens.

Der langlebige Zustand des ersten Molekültyps existiert eine ausreichend große Zeitspanne, um die Energie in einen langlebigen Zustand eines zweiten organischen Molekültyps zu übertragen. Die Energieübertragung findet statt, wenn sich die Moleküle des ersten und zweiten Typs in der Lösung begegnen. Treffen nun wiederum zwei auf diese Art angeregte Moleküle des zweiten Typs aufeinander, so wechselt eines davon in seinen Grundzustand zurück Das andere nimmt jedoch einen noch höheren Energiezustand ein, der extrem kurzlebig ist. Das Molekül sendet deshalb dann ein einzelnes Lichtteilchen mit so hoher Energie aus, dass es von der Solarzelle absorbiert werden kann.

„Auf diese Art konnten wir erstmals einen Effizienzgewinn einer Solarzelle durch die photochemische Hochkonversion demonstrieren", sagt Projektleiter Dr. Klaus Lips vom HZB-Institut für Silizium-Photovoltaik: „Noch ist die erreichte Steigerung in der Effizienz der Solarzelle gering – etwa 0.1 Prozent absolut und das Sonnenlicht muss dafür sogar 50-fach konzentriert werden – aber der Weg zu weiterer Verbesserung ist klar erkennbar.“ Dieser ist allerdings steinig und hart, wie Lips betont: „Für die jetzt veröffentlichte Konzeptstudie haben wir eine spezielle Solarzelle genutzt, die vom PVcomB, dem Kompetenzzentrum für Dünnschicht- und Nanotechnologie für Photovoltaik hergestellt wurde. Aber das war noch keine 25-Prozent-Hochleistungssolarzelle, wie es aber später für die Praxis erforderlich ist.“ Außerdem müsse weitere Entwicklungsarbeit dahin führen, dass die organischen Moleküle des photochemischen Hochkonverters nicht in einer Flüssigkeit gelöst vorliegen. Sie müssten auch bei normalem, nicht konzentriertem Sonnenlicht ihre Wirkung entfalten und für kristallines Silizium sei ein Infrarotlicht-Konverter erforderlich.

„Die Konzepte hierfür werden in enger Kooperation zwischen Sydney und dem HZB erarbeitet“, sagt Klaus Lips: Der wesentliche Vorteil gegenüber anderen Ansätzen dieser „Photovoltaik der 3. Generation“ liege darin, dass die Solarzelle nicht aufwendig neu entwickelt werden müsse, sondern im Prinzip das bloße Hinzufügen des Hochkonverters ausreiche, um die Effizienz zu erhöhen. Klaus Lips: „Genauso wie man in ein Auto einen Turbo einbaut, um es schneller zu machen.“

Kontakt:

Timothy Schmidt
School of Chemistry
University of Sydney, Australia
Tel.: +61 (439) 386109
t.schmidt@chem.usyd.edu.au

HS

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.