Europäische Union fördert Dünnschicht-Solarzellen-Projekt mit mehr als zehn Millionen Euro

Zinkoxid-Nanostäbe sind hier auf eine CIGSe-Solarzelle<br />als Antireflexionsschicht abgeschieden<br />©HZB

Zinkoxid-Nanostäbe sind hier auf eine CIGSe-Solarzelle
als Antireflexionsschicht abgeschieden
©HZB

Am europäischen Konsortium sind das Helmholtz-Zentrum Berlin und die Freie Universität Berlin als Partner beteiligt

Die Europäische Union hat bis 2015 innerhalb des 7. Forschungsrahmenprogramms Mittel in Höhe von mehr als zehn Millionen Euro für das Dünnschicht-Solarzellen-Projekt „Scalenano“ bewilligt. 13 europäische Forschungsgruppen werden an der Weiterentwicklung der Chalkogenid-Solarzellentechnologie arbeiten. In Deutschland sind das Helmholtz-Zentrum Berlin (HZB) und die Freie Universität Berlin an dem europäischen Konsortium beteiligt. Das Ziel ist, die Produktionskosten deutlich zu senken und mit nanostrukturierten Materialien zugleich den Wirkungsgrad der Dünnschicht-Module zu erhöhen.

Unter den Chalkogeniden ist Kupfer-Indium-Gallium-Diselenid (CIGSe) das Material, welches den gegenwärtig höchsten Wirkungsgrad liefert. Bisher wird die Verbindung überwiegend mit einer vakuumbasierten Beschichtungstechnik in mikrometerdünnen Schichten auf Glas oder Folie aufgebracht. Ein Ziel der europäischen Zusammenarbeit ist es, neue umweltfreundliche Produktionstechniken zu entwickeln, die ohne Vakuum auskommen. Eine erhebliche Kostensenkung soll damit erreicht werden.

Mit neuen Material- und Bauelementkonzepten will man zugleich den Durchbruch hinsichtlich höherer Wirkungsgrade schaffen. Dafür kommen nanostrukturierte Materialien zum Einsatz. Mit der elektrochemischen Synthese von nanokristallinen Vorstufen, sogenannten Precursoren, und neuen Techniken, bei denen Nanopartikel ähnlich wie Tinte gedruckt werden, wollen die Forscher völlig neue Produktionswege erschließen. Damit dies nicht nur im Labormaßstab an einzelnen Solarzellen gelingt, sollen die Herstellungskonzepte zugleich für eine mögliche Hochskalierung auf größere Maßstäbe geprüft werden.

Die Projektpartner am Helmholtz-Zentrum Berlin werden vor allem an der Qualitätskontrolle und Prozessüberwachung arbeiten. Das HZB-Team um Dr. Thomas Unold entwickelt hierfür neuartige analytische Methoden zur Charakterisierung der Solarzellen während des Herstellungsprozesses. Damit wollen die Wissenschaftler die Qualität des Chalkogenid-Absorbermaterials verbessern. Mit den neuen Methoden soll auch eine hohe Ausbeute und ein großer Durchsatz bei der Hochskalierung gewährleistet werden.

In der neuen Forschungsstrategie sollen auch Dünnschicht-Absorbermaterialien mit nanostrukturierten sogenannten transparenten leitfähigen Oxiden (TCO) kombiniert werden. Zu diesem Schwerpunkt arbeitet das Team von Professorin Martha Lux-Steiner und Dr. Sophie Gledhill von der Freien Universität Berlin und dem Helmholtz-Zentrum Berlin an der Anpassung, Optimierung und optischen Modellierung von Chalkogenid-Solarzellen, die zusätzlich Zinkoxid-Nano-Arrays enthalten.

Die Berliner Forscher arbeiten außerdem an der nächsten Generation der Chalkogenid-Dünnschicht-Materialien, den sogenannten Kesteriten. Diese besitzen ähnliche Eigenschaften wie Kupfer-Indium-Gallium-Diselenid-Materalien, kommen jedoch ohne Indium aus, das relativ selten in der Erdkruste vorkommt.

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • Gute Aussichten für Zinn-Perowskit-Solarzellen
    Science Highlight
    03.12.2025
    Gute Aussichten für Zinn-Perowskit-Solarzellen
    Perowskit-Solarzellen gelten weithin als die Photovoltaik-Technologie der nächsten Generation. Allerdings sind Perowskit-Halbleiter langfristig noch nicht stabil genug für den breiten kommerziellen Einsatz. Ein Grund dafür sind wandernde Ionen, die mit der Zeit dazu führen, dass das Halbleitermaterial degradiert. Ein Team des HZB und der Universität Potsdam hat nun die Ionendichte in vier verschiedenen Perowskit-Halbleitern untersucht und dabei erhebliche Unterschiede festgestellt. Eine besonders geringe Ionendichte wiesen Zinn-Perowskit-Halbleiter auf, die mit einem alternativen Lösungsmittel hergestellt wurden – hier betrug die Ionendichte nur ein Zehntel im Vergleich zu Blei-Perowskit-Halbleitern. Damit könnten Perowskite auf Zinnbasis ein besonders großes Potenzial zur Herstellung von umweltfreundlichen und besonders stabilen Solarzellen besitzen.
  • Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Nachricht
    28.11.2025
    Gemeinsames Energie- und Klimalabor in Kyjiw nimmt Betrieb auf
    Das Helmholtz-Zentrum Berlin und die Nationale Universität Kyjiw-Mohyla-Akademie haben am 27. November ein gemeinsames Energie- und Klimalabor gegründet.
  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.