Forscher zeigen mit Berechnungen, dass kompakte Laser-Plasma-Beschleuniger möglich sind

Ultrakurze Pulse aus kohärentem Röntgenlicht sind ein fantastisches Mittel, um Einsichten in atomare oder molekulare Reaktionen zu gewinnen. In Freien-Elektronen-Lasern können solche Pulse im Femtosekundenbereich (10 -15 sek) erzeugt werden. Doch bislang sind dafür enorme Beschleuniger nötig, die nur an wenigen Großforschungseinrichtungen der Welt zur Verfügung stehen.  An einer kompakteren Alternative arbeitet Dr. Atoosa Meseck vom HZB-Institut für Beschleunigerphysik mit Kollegen aus dem HZB und anderen Forschungseinrichtungen. Nun haben sie einen Bauplan für eine kompakte Quelle für kohärente kurzwellige Strahlung entworfen und berechnet. Dieses Ergebnis veröffentlichten sie in der Fachzeitschrift "Physical Review".

Das Prinzip klingt ganz einfach: In einem heißen Plasma  erzeugt ein Laserstrahl „Wellen“, die die Elektronen bis auf nahezu Lichtgeschwindigkeit beschleunigen. Allerdings erhalten die so beschleunigten Elektronen damit unterschiedlich viel Energie, so dass dieRöntgenpulse, die sie abgeben, nicht kohärent sind.

Andreas Maier vom CFEL bei DESY hat nun mit Meseck und weiteren Kollegen berechnet, wie dieses Problem gelöst werden könnte: Der Schlüssel steckt in der Anordnung der so genannten Undulatoren. Diese Undulatoren bestehen aus einer Reihe von Dipolmagneten, die die Elektronen auf eine Art Slalombahn zwingen. Durch die geschickte Wahl der Abstände und Feldstärken dieser Geräte sowie durch ein geeignetes Elektronenstrahlführungssystem lässt sich  die lokale Energiebandbreite deutlich verringern, so dass die Elektronen nahezu gleiche Energie besitzen und kohärente Röntgenpulse abgeben. Damit haben die Beschleunigerexperten einen Weg zu einem kompakten „Freie-Elektronen-Laser“ aufgezeigt.

„Wir verfolgen die Idee eines Laser-getriebenen Plasma-Beschleunigers schon seit einigen Jahren, zuerst sind wir dafür fast ausgelacht worden. Daher bin ich ganz stolz, dass nun auch andere Experten erkennen, dass dies eine durchaus interessante Idee und wie ich glaube, auch eine machbare Idee ist“, sagt Atoosa Meseck. Auf die Ergebnisse einer experimentellen Arbeitsgruppe, die diese Idee nun überprüfen wird, sind alle Beteiligten sehr gespannt.

Mehr Informationen:

http://prx.aps.org/abstract/PRX/v2/i3/e031019

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Perowskit-Forschung: Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.