Forscher zeigen mit Berechnungen, dass kompakte Laser-Plasma-Beschleuniger möglich sind

Ultrakurze Pulse aus kohärentem Röntgenlicht sind ein fantastisches Mittel, um Einsichten in atomare oder molekulare Reaktionen zu gewinnen. In Freien-Elektronen-Lasern können solche Pulse im Femtosekundenbereich (10 -15 sek) erzeugt werden. Doch bislang sind dafür enorme Beschleuniger nötig, die nur an wenigen Großforschungseinrichtungen der Welt zur Verfügung stehen.  An einer kompakteren Alternative arbeitet Dr. Atoosa Meseck vom HZB-Institut für Beschleunigerphysik mit Kollegen aus dem HZB und anderen Forschungseinrichtungen. Nun haben sie einen Bauplan für eine kompakte Quelle für kohärente kurzwellige Strahlung entworfen und berechnet. Dieses Ergebnis veröffentlichten sie in der Fachzeitschrift "Physical Review".

Das Prinzip klingt ganz einfach: In einem heißen Plasma  erzeugt ein Laserstrahl „Wellen“, die die Elektronen bis auf nahezu Lichtgeschwindigkeit beschleunigen. Allerdings erhalten die so beschleunigten Elektronen damit unterschiedlich viel Energie, so dass dieRöntgenpulse, die sie abgeben, nicht kohärent sind.

Andreas Maier vom CFEL bei DESY hat nun mit Meseck und weiteren Kollegen berechnet, wie dieses Problem gelöst werden könnte: Der Schlüssel steckt in der Anordnung der so genannten Undulatoren. Diese Undulatoren bestehen aus einer Reihe von Dipolmagneten, die die Elektronen auf eine Art Slalombahn zwingen. Durch die geschickte Wahl der Abstände und Feldstärken dieser Geräte sowie durch ein geeignetes Elektronenstrahlführungssystem lässt sich  die lokale Energiebandbreite deutlich verringern, so dass die Elektronen nahezu gleiche Energie besitzen und kohärente Röntgenpulse abgeben. Damit haben die Beschleunigerexperten einen Weg zu einem kompakten „Freie-Elektronen-Laser“ aufgezeigt.

„Wir verfolgen die Idee eines Laser-getriebenen Plasma-Beschleunigers schon seit einigen Jahren, zuerst sind wir dafür fast ausgelacht worden. Daher bin ich ganz stolz, dass nun auch andere Experten erkennen, dass dies eine durchaus interessante Idee und wie ich glaube, auch eine machbare Idee ist“, sagt Atoosa Meseck. Auf die Ergebnisse einer experimentellen Arbeitsgruppe, die diese Idee nun überprüfen wird, sind alle Beteiligten sehr gespannt.

Mehr Informationen:

http://prx.aps.org/abstract/PRX/v2/i3/e031019

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.