Klaus Lips ist Professor an der Freien Universität Berlin

Prof. Dr. Klaus Lips

Prof. Dr. Klaus Lips

Prof. Dr. Klaus Lips hat den Ruf auf die W2-Professur „Analytik für die Photovoltaik“ am Fachbereich Physik der Freien Universität Berlin angenommen und wurde im Dezember 2012 offiziell ernannt. Gleichzeitig ist Klaus Lips wissenschaftlicher Leiter des Zukunftsprojekts „EMIL“ am Helmholtz-Zentrum Berlin und wird in den nächsten Jahren am Elektronenspeicherring BESSY II ein einzigartiges Experimentierlabors für die in-situ Analytik von Dünnschichtsolarzellen aufbauen. 

Mit dem gemeinsamen Berufungsverfahren stärken die Freie Universität Berlin und das Helmholtz-Zentrum Berlin ihre Zusammenarbeit. Klaus Lips übernimmt an der FU Berlin Lehrverpflichtungen im Umfang von 2 Semesterwochenstunden und bildet Studierende in der „Analytik für die Photovoltaik“ aus.

Im gemeinsamen mit der FU Berlin betrieben Labor für Elektronenspinresonanz („Berlin Joint EPR-Lab“) wird er die Forschung an Dünnschichtsolarzellen und Materialien für die Photokatalyse vorantreiben. Die Elektronenspinresonanz (EPR) ist vielversprechend, weil der Wirkungsgrad von Solarzellen oft durch paramagnetische Defekte, zum Beispiel durch Verunreinigungen oder Baufehler des Materials, begrenzt wird und katalytische Prozesse meist über paramagnetische Zentren ablaufen, die mittels der EPR charakterisiert werden können.

Das Helmholtz-Zentrum Berlin wird gemeinsam mit der Max-Planck-Gesellschaft ein neues dediziertes Röntgen-Strahlrohr an der Synchrotronquelle BESSY II bauen, welches für die Analyse von Materialien für die regenerative Energiegewinnung eingesetzt werden soll. Das Großprojekt EMIL (Energy Materials In-situ Laboratory Berlin) wird Forschern weltweit einzigartige Charakterisierungsmöglichkeiten für Dünnschichtschichtsolarzellen und Materialien für die Katalyse bieten. Das Ziel ist, die physikalisch-chemischen Prozesse innerhalb der Solarzellen und katalytisch aktiver Substanzen noch besser zu verstehen. Mit diesem Wissen könnten Wissenschaftler in Zukunft leistungsfähigere Bauelemente für die regenerative Energiegewinnung und -speicherung entwickeln.

SZ

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.