PD Dr. Silke Christiansen verstärkt Energieforschung

Die Werkstoffwissenschaftlerin PD Dr. Silke Christiansen leitet ab Januar 2013 am Helmholtz-Zentrum Berlin das neue Institut „Nanoarchitekturen für die Energiewandlung“. Damit baut das HZB die Solarenergieforschung weiter aus. Für den Aufbau des Instituts steht Frau Christiansen eine zusätzliche Finanzierung durch die Helmholtz-Rekrutierungsinitiative von 600.000 Euro pro Jahr über fünf Jahre zur Verfügung.

Zurzeit leitet Frau Christiansen eine unabhängige wissenschaftliche Technologieentwicklungsgruppe für „Photonische Nanostrukturen“ am Max-Planck-Institut für die Physik des Lichtes in Erlangen. Sie hat über 180 Veröffentlichungen in begutachteten Fachzeitschriften und hält 10 zugeteilte Patente.

In Zukunft wird Frau Christiansen neuartige Material-Komposite vornehmlich für Solarzellen der 3. Generation und solare Brennstoffe entwickeln. Dabei deckt sie die gesamte Forschungskette von Modellierung und Simulation über Charakterisierung und Nano-Analyse bis hin zur Entwicklung von Verfahrensprozessen und Bauelementen ab.

„Neue nanostrukturierte Materialien, Materialverbünde und Komposite werden ganz wesentlich für zukünftige Konzepte zur Energiegewinnung und Speicherung sein. Ich freue mich, dass ich jetzt in dem einzigartigen Umfeld, das Berlin und die Helmholtz-Gemeinschaft bieten, die Forschung auf diesem Gebiet mit voller Energie vorantreiben kann“, sagt Frau Christiansen

Das neue Institut passt von seiner Thematik hervorragend zu den Instituten für Silizium-Photovoltaik und dem im Sommer 2012 gegründeten Institut für Solare Brennstoffe und wird eng mit diesen Instituten zusammenarbeiten. Außerdem wird Frau Christiansen mit Arbeitsgruppen an Universitäten sowie Industriepartnern kooperieren. Auf dem Wilhelm Conrad-Röntgen-Campus in Adlershof wird Frau Christiansen mit ihrem Team an der Planung und am Aufbau des Energy Materials In-situ Laboratory (EMIL) mitarbeiten. Am Lise-Meitner-Campus in Wannsee wird sie die Expertise am HZB zur Elektronenmikroskopie konzentrieren.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Science Highlight
    25.11.2025
    Wie Karbonate die Umwandlung von CO2 in Kraftstoff beeinflussen
    Ein Forschungsteam vom Helmholtz Zentrum Berlin (HZB) und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft (FHI) hat herausgefunden, wie Karbonatmoleküle die Umwandlung von CO2 in nützliche Kraftstoffe durch Gold-Elektrokatalysatoren beeinflussen. Ihre Studie beleuchtet, welche molekularen Mechanismen bei der CO2-Elektrokatalyse und der Wasserstoffentwicklung eine Rolle spielen und zeigt Strategien zur Verbesserung der Energieeffizienz und der Selektivität der katalytischen Reaktion auf.
  • Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Science Highlight
    25.11.2025
    Neue Katalysatormaterialien auf Basis von Torf für Brennstoffzellen
    Eisen-Stickstoff-Kohlenstoff-Katalysatoren haben das Potenzial, teure Platinkatalysatoren in Brennstoffzellen zu ersetzen. Dies zeigt eine Studie aus Helmholtz-Zentrum Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universitäten in Tartu und Tallinn, Estland. An BESSY II beobachtete das Team, wie sich komplexe Mikrostrukturen in den Proben bilden. Anschließend analysierten sie, welche Strukturparameter für die Förderung der bevorzugten elektrochemischen Reaktionen besonders wichtig waren. Der Rohstoff für solche Katalysatoren ist gut zersetzter Torf.
  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.