Ultrafast Spin Manipulation at THz frequencies
An ultrafast spin current triggers the emission of Terahertz-Radiation. © H. D. Wöhrle/Universität Göttingen
The demands for ever increasing speed of information storage and data processing have triggered an intense search for finding the ultimately fast ways to manipulate spins in a magnetic medium. In this context, the use of femtosecond light pulses – the fastest man-made event - with photon energies ranging from X-rays (as used for instance at the HZB femto-slicing facility) to THz spectral range proved to be an indispensable tool in ultrafast spin and magnetization dynamics studies.
In a paper in Nature Nanotechnology, HZB-scientist Ilie Radu and his colleagues from Fritz-Haber-Institut Berlin, Uppsala, Göttingen and Forschungzentrum Jülich demonstrate a simple but very powerful way of manipulating the spins at unprecedented speeds within the so far unexplored THz range (1THz=1012 Hz). They use a femtosecond laser pulse to photo-excite the spins from a magnetic material to a non-magnetic one that is chosen to either trap or release the electrons carrying the spins. By this method they are able to generate ultrashort spin currents with tailor-made shapes and durations, which are detected using an ‘ultrafast amperemeter’ (based on the Inverse Spin Hall Effect) that converts the spin flow into a terahertz electromagnetic pulse.
These findings will possibly allow us to develop and design novel material with tailor-made characteristics, which might boost the magnetic recording rates of the magnetic bits to unprecedented speeds at THz frequencies.
I.R.
The work is published in:T. Kampfrath et al. „Terahertz spin current pulses controlled by magnetic heterostructures”, Nature Nanotechnology 2013, doi: http://dx.doi.org/10.1038/NNANO.2013.43.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=13688;sprache=en
- Copy link
-
Perovskites: Hybrid materials as highly sensitive X-ray detectors
New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
-
Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
-
BESSY II: Insight into ultrafast spin processes with femtoslicing
An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.