Schnappschüsse von einem zentralen Prozess des Lebens

Das Deutsch-Amerikanische Team untersucht zentrale Reaktionen bei der Photosynthese an Lichtquellen wie SLAC und BESSY II. Illustration: Greg Stewart, SLAC National Accelerator Laboratory

Das Deutsch-Amerikanische Team untersucht zentrale Reaktionen bei der Photosynthese an Lichtquellen wie SLAC und BESSY II. Illustration: Greg Stewart, SLAC National Accelerator Laboratory

Human Frontier Science Program fördert internationales Forschungsprojekt zu Photosynthese.

Die Photosynthese zählt zu den zentralen Prozessen, die Leben ermöglichen, ist aber bisher nur grob verstanden. Mit ultrakurzen Schnappschüssen an modernen Lichtquellen wie BESSY II in Berlin und der Linac Coherent Light Source in Stanford will nun ein deutsch-amerikanisches Team die Zwischenschritte bei der komplexen katalytischen Reaktion beobachten. Dafür hat ihnen das Human Frontier Science Program nun eine Unterstützung von rund 900.000 US-Dollar für die nächsten drei Jahre zugesichert.  Zum Team gehören der HZB-Physiker Dr. Philippe Wernet, die Chemikerin Prof.  Dr. Athina Zouni von der Humboldt-Universität zu  Berlin, Dr. Uwe Bergmann vom SLAC National Accelerator Laboratory und Dr. Junko Yano, Lawrence Berkeley National Laboratory, die das Projekt federführend leitet.

Natürlicher Katalysator unter der Lupe

Obwohl alle tierischen Organismen Sauerstoff verbrauchen, geht uns der Sauerstoff glücklicherweise nicht aus. Denn Grünpflanzen, Algen und Cyanobakterien bauen aus CO2,Wasser und Sonnenlicht durch Photosynthese andere Moleküle auf und setzen dabei wieder Sauerstoff frei. Dabei wird die zentrale Reaktion im „Photosystem II“- Protein“, nämlich die Abspaltung von Sauerstoff aus Wasser, erst durch einen Katalysator möglich, ein komplexes Molekül mit einem Kern aus Mn4CaO5.

Wie die Reaktion an diesem natürlichenKatalysator nun genau abläuft, wollen Forscher am HZB zusammen mit Kollegen der HU Berlin und in den USA untersuchen. Neue Einsichten wären nicht nur grundsätzlich spannend, sondern könnten auch dazu beitragen, Solarenergie in Form von solaren Brennstoffen zu speichern und so eine der großen Herausforderungen der Energiewende zu lösen.  

Neuer Ansatz: Reaktionen bei Raumtemperatur beobachten

Zu diesem Zweck hat das Team nun einen neuen Ansatz entwickelt, der weit über die konventionelle Röntgenkristallografie und Röntgenspektroskopie bei tiefen Temperaturen hinausgeht. Denn solange die Untersuchungen bei Temperaturen nahe dem absoluten Nullpunkt stattfinden, sind die Bedingungen keineswegs lebensnah. Auch beschädigt die Röntgenstrahlung die Katalysemoleküle.

Die intensiven und ultrakurzen Femtosekunden-Röntgenpulse an der Linac Coherent Light Source, einem Freien-Elektronenlaser am SLAC National Accelerator Laboratory in Stanford bieten die Möglichkeit, bei Raumtemperatur Daten zu sammeln und dabei das Signal aufzufangen, bevor die Probe zerstört wird. „Wir machen eine Art Schnappschuss von der Reaktion“, erklärt Philippe Wernet.  

Die Forscher wollen damit die Protein-Struktur und die Dynamik der Reaktion am Mn4CaO5 –Cluster untersuchen, und zwar während weiter Licht absorbiert wird und Wasser zu Sauerstoff  oxidiert. „Wir planen eine Folge von zeitaufgelösten Röntgenstreu- und Röntgenspektroskopie-Experimenten, um die Reaktion bei Raumtemperatur zu untersuchen und dabei alle Zwischenschritte abzubilden“, erklärt Wernet.  So hoffen sie,  einen sehr genauen Einblick in  die Reaktionen zu erhalten, die für den Prozess der photosynthetischen Wasser-Oxidation nötig sind.

SLAC und BESSY II ergänzen sich

Dabei ergänzen sich die vier Experten auf ideale Weise. Junko Yano vom Lawrence Berkeley National Laboratory und die Chemikerin Athina Zouni von der Humboldt-Universität zu Berlin sind ausgewiesene Expertinnen für das Photosystem II Protein und Röntgenkristallografie. Die Gruppe um Uwe Bergmann an der Linac Coherent Light Source, USA, wird die Schnappschüsse mit harter Röntgenstrahlung machen. Philippe Wernet vom HZB kann die Proben zeitaufgelöst mit weichen Röntgenstrahlen an BESSY II untersuchen.

Zur Webseite des Human Frontiers Science Programs

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Neues HZB-Magazin „Lichtblick“ ist erschienen
    Nachricht
    18.09.2025
    Neues HZB-Magazin „Lichtblick“ ist erschienen
    In der neuen Ausgabe stellen wir unsere neue kaufmännische Geschäftsführerin vor. Wir zeigen aber auch, wie wichtig uns der Austausch ist: Die Wissenschaft lebt ohnehin vom fruchtbaren Austausch. Uns ist aber auch der Dialog mit der Öffentlichkeit sehr wichtig. Und ebenso kann Kunst einen bereichernden Zugang zur Wissenschaft schaffen und Brücken bauen. Um all diese Themen geht es in der neuen Ausgabe der Lichtblick.
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.