Pikosekunden schnelle Zeitlupe belegt: Oxid-Materialien schalten deutlich schneller als Halbleiter

Ein optischer Laserblitz (rot) zerstört die elektronische Ordnung (blau) in Magnetit und schaltet den Zustand des Material innerhalb eines Billionstels einer Sekunde von isolierend zu leitend um.

Ein optischer Laserblitz (rot) zerstört die elektronische Ordnung (blau) in Magnetit und schaltet den Zustand des Material innerhalb eines Billionstels einer Sekunde von isolierend zu leitend um. © Greg Stewart, SLAC National Accelerator Laboratory

Ein internationales Forscherteam unter maßgeblicher Beteiligung von Wissenschaftlern des Helmholtz-Zentrum Berlin (HZB) beobachtet den Schaltprozess zwischen nichtleitendem und leitendem Zustand in Eisenoxid (Magnetit) mit bislang unerreichter Präzision. In der aktuellen online-vorab-Ausgabe der Zeitschrift Nature Materials (DOI: 10.1038/NMAT3718) beschreiben sie, dass der Schaltprozess in einem Oxid in zwei Stufen abläuft und mehrere tausend Mal schneller ist als in heute üblichen Transistoren.

Materialien, die sich so verändern können, dass sie sowohl leitend als auch isolierend sein können, gelten als geeignet für elektronische Bauteile der Zukunft – zum Beispiel für Transistoren. Das Eisenoxid Magnetit ist der bekannteste Vertreter dieser Materialklasse. Bei tiefen Temperaturen hat es isolierende Eigenschaften. Bei höheren Temperaturen wird es leitend. Dieser Umschaltvorgang verläuft jedoch so schnell, dass man ihn auf atomarer Ebene bislang nicht verstehen konnte.

Ein internationales Forscherteam hat es nun mit einem Experiment an der amerikanischen Quelle für ultrakurze Röntgenblitze LCLS am Nationallabor SLAC geschafft, den Schaltvorgang in einer Art kürzest möglicher Zeitlupe einzufrieren. So konnten sie nachweisen, dass der Übergang in zwei Stufen verläuft. „In einem ersten Schritt entstehen in dem isolierenden Material leitende Inseln. Dann dauert es weniger als eine Pikosekunde (ein Billionstel einer Sekunde), bis die Atome sich umorganisieren und ein komplettes Metallgitter entsteht“, erläutert Christian Schüßler-Langeheine vom Helmholtz-Zentrum Berlin.

Am Elektronenspeicherring BESSY II, den das HZB betreibt, hat die Gruppe um Schüßler-Langeheine die für das Experiment bei SLAC erforderlichen Vorarbeiten durchgeführt. Mit den so gewonnenen Informationen konnte dann das Experiment bei SLAC konzipiert und erfolgreich durchgeführt werden.

In dem Experiment in Kalifornien wurde Magnetit auf minus 190 Grad gekühlt. Dann wurde es mit Infrarot-Laserlicht beschossen. Die Energiezufuhr löst den Schaltprozess aus. Kurze Zeit später folgt ein Röntgen-Laserpuls, mit dem die Forscher den Schaltprozess wie mit einer Stroboskoplampe beobachten. Solche zeitaufgelösten Messungen im Pikosekunden-Abstand sind nur an ganz wenigen Photonenquellen in der Welt möglich.

„Am HZB forschen wir an Materialien für eine schnellere und energieeffizientere Elektronik“, sagt Christian Schüßler-Langeheine. „In diesem Experiment haben wir gesehen, wie extrem schnell ein Schalter aus einem Oxid-Material wie Magnetit sein kann. Oxide sind somit eine spannende Alternative zu den heute gängigen Halbleitern. Insbesondere solche Materialien, die Metall-Isolator-Übergänge auch bei Raumtemperatur zeigen.“

An dem Forschungsprojekt waren Kollegen von SLAC und Stanford University, CFEL und Uni Hamburg, den Universitäten in Amsterdam, Köln, Potsdam, Regensburg, des MPI CPfS in Dresden, der Europäischen Quellen für Röntgenpulse ELETTRA in Trieste und XFEL in Hamburg, der Advanced Light Source in Berkely und dem Schweizer Paul Scherrer Institut beteiligt. Die Proben wurden an der Purdue Universität präpariert.

Link zur SLAC-Pressemitteilung

IH

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.