Picosecond accurate slow-motion confirms oxide materials exhibit considerably faster switching properties than do semi-conductors

 Optical laser flash (red) destroys the electronic order (blue) in magnetite and, within one trillionth of a second, switches the state of the material from insulating to conducting.

Optical laser flash (red) destroys the electronic order (blue) in magnetite and, within one trillionth of a second, switches the state of the material from insulating to conducting. © Greg Stewart, SLAC National Accelerator Laboratory

As part of an international team of researchers, scientists at the Helmholtz Center Berlin (HZB) have observed the switching mechanism from a non-conducting to a conducting state in iron oxide (specifically, magnetite) with previously unrealized precision. This switching mechanism - which, in oxides, proceeds in two consecutive steps and which is thousands of times faster than it is in current transistors - is described in the current epub-ahead-of-print issue of the scientific journal Nature Materials (DOI: 10.1038/NMAT3718).  

Materials that have the ability to switch between being good conductors and being good insula-tors are considered good potential candidates for electronic building blocks – for use in transis-tors, for example. The iron oxide magnetite is the best known representative of this class of ma-terials. At low temperatures, magnetite has insulating properties; at high temperatures, the oxide is a good conductor. This switching mechanism however happens so quickly that it’s been im-possible until now to fully grasp it on an atomic level.

Now, an international team of scientists at LCLS, the US source for ultrafast X-ray light at the SLAC National Laboratory, has managed to freeze the switching mechanism in ultraslow-motion. The researchers were able to document that the transition proceeds in two stages. “The first step involves  the appearance of conducting islands within the insulating material. Thereaf-ter, it takes less than a picosecond (that is, one trillionth of a second) before the atoms re-organize to create a complete metallic grid,” explains HZB’s own Christian Schüßler-Langeheine.

At BESSY II, the HZB operated electron storage ring, Schüßler-Langeheine and his team took care of the work that was necessary in preparation for the SLAC experiment. The insights gleaned from this work provided the basic framework for the SLAC experiment and for its suc-cessful realization.

The experiment, which was conducted in California, involved cooling magnetite to a temperature of minus 190 degrees. In a next step, the oxide was hit with laser light, the energy from which ended up prompting the switching mechanism. In place of a strobe light, the researchers used an X-ray laser pulse to observe the switching mechanism. Only a handful of photon sources in the World have the capabilities of performing these types of picosecond interval time-resolved measurements.
 
“At the HZB, we are doing research on materials for use in faster, more energy-efficient elec-tronics,” Christian Schüßler-Langeheine says.  “Our experiment confirmed that the switch of an oxide material like magnetite can be incredibly fast. Oxides thus represent an exciting alternative to currently available semiconductors – especially the kinds of materials that also show metal insulator transitions at room temperature.”

The research was conducted jointly by scientists at the SLAC and Stanford University, the CFEL and Hamburg University, Amsterdam, Cologne, Potsdam, and Regensburg Universities, the Dresden-based MPI CPfS, the European Source for X-ray pulses ELETTRA in Trieste, the XFEL in Hamburg, the Advanced Light Source in Berkeley, and the Swiss Paul Scherrer Insti-tute. The samples were prepared at Purdue University.

Link to SLAC Press Release

IH

  • Copy link

You might also be interested in

  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.