Neue Werkzeuge, um molekulare Wechselwirkungen zu verstehen

Diese Grafik zeigt die von Aziz entwickelte Fließzelle, die es ermöglicht, biologische Proben in ihrer natürlichen, wässrigen Umgebung mit Röntgenstrahlung zu untersuchen. Insbesondere die dunklen Stellen im Spektrum lassen nun dank theoretischer Arbeiten der Gruppe um Oliver Kühn sehr genaue Rückschlüsse auf molekulare Interaktionen in der Probe zu.

Diese Grafik zeigt die von Aziz entwickelte Fließzelle, die es ermöglicht, biologische Proben in ihrer natürlichen, wässrigen Umgebung mit Röntgenstrahlung zu untersuchen. Insbesondere die dunklen Stellen im Spektrum lassen nun dank theoretischer Arbeiten der Gruppe um Oliver Kühn sehr genaue Rückschlüsse auf molekulare Interaktionen in der Probe zu. © Uni Rostock

Chemische Prozesse in Organismen aber auch in anorganischen „nassen“ Systemen wie Katalysatoren oder neuen funktionalen Materialien sind höchst komplex und viele sind bisher nur sehr grob verstanden. Denn es ist überaus schwierig, experimentell zu verfolgen, wie Atome oder Moleküle in Lösung miteinander reagieren, Bindungen eingehen oder auflösen. Bisher konnten Forscher mit spektroskopischen Verfahren nur eine Überlagerung aller Wechselwirkungen beobachten, nicht jedoch einzelne Bindungsvorgänge unterscheiden. Das könnte sich durch eine aufsehenerregende Arbeit von HZB-Forschern um Emad Flear Aziz nun ändern. Er entwickelte ein verfeinertes Messverfahren, mit dem er eine Art Fingerabdruck der Wechselwirkungen nehmen kann. Aus diesem „Fingerabdruck“ lassen sich mit Hilfe eines theoretischen Werkzeugs, das  Oliver Kühn, Universität Rostock, entwickelt hat, einzelne Reaktionen identifizieren. Die Arbeit ist nun in den Physical Review Letters veröffentlicht.

“Im Grunde beobachten wir, wie Atome und Moleküle in Lösung miteinander wechselwirken”, erklärt Professor Dr. Emad Flear Aziz, Helmholtz-Nachwuchsgruppenleiter am HZB und Professor an der Freien Universität Berlin. Seine jetzt veröffentlichte Arbeit basiert auf einer Entdeckung, mit der Aziz bereits 2010 eine große Debatte ausgelöst hatte: Bei röntgenspektroskopischen Untersuchungen an BESSY II fand er in seinen Proben eine Art „Dunklen Kanal“, in dem Photonen bestimmter Energie verschwanden. Diese Ergebnisse, die von anderen Teams weltweit reproduziert werden konnten, könnten Aufschluss über einzelne Bindungsvorgänge geben, vermutete Aziz bereits damals. 

Nun kann er seine Vermutung untermauern. Professor Dr. Oliver Kühn und Postdoktorand Dr. Sergey Bokarev, Universität Rostock, berechneten die Energielevels der möglichen Bindungsprozesse und stellten damit ein Werkzeug zur Verfügung, um die experimentellen Daten zu interpretieren. Auch das Team von Aziz schärfte das experimentelle Verfahren weiter und entwickelte einen neuen Ansatz für die hochauflösende Röntgenspektroskopie. „Wir können nun alle elektronischen Zustände im System, das wir messen, einzeln zuordnen und diejenigen unterscheiden, die mit ihren Nachbarn Bindungen eingehen, von jenen, die es nicht tun“, erklärt Aziz.

Das neue Verfahren ähnelt damit einem Hörgerät, mit dem man im Partylärm gezielt einzelnen Gesprächen zuhören kann, anstatt nur ein Durcheinander von Stimmen wahrzunehmen. Die Forscher sind überzeugt, dass ihre Arbeit dazu beitragen wird, die Chemie des Lebens besser zu verstehen.


Zum Fachbeitrag: State-Dependent Electron Delocalization Dynamics at the Solute-Solvent Interface: Soft-X-Ray Absorption Spectroscopy and Ab Initio Calculations
DOI:10.1103/PhysRevLett.111.083002

Zur Presseinfo 2010 über den Dark Channel Mechanism "Hilfe von der dunklen Seite"

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Helmholtz-Nachwuchsgruppe zu Magnonen
    Nachricht
    24.11.2025
    Helmholtz-Nachwuchsgruppe zu Magnonen
    Dr. Hebatalla Elnaggar baut am HZB eine neue Helmholtz-Nachwuchsgruppe auf. An BESSY II will die Materialforscherin sogenannte Magnonen in magnetischen Perowskit-Dünnschichten untersuchen. Sie hat sich zum Ziel gesetzt, mit ihrer Forschung Grundlagen für eine zukünftige Terahertz-Magnon-Technologie zu legen: Magnonische Bauelemente im Terahertz-Bereich könnten Daten mit einem Bruchteil der Energie verarbeiten, die moderne Halbleiterbauelemente benötigen, und das mit bis zu tausendfacher Geschwindigkeit.

    Dr. Hebatalla Elnaggar will an BESSY II magnetische Perowskit-Dünnschichten untersuchen und damit die Grundlagen für eine künftige Magnonen-Technologie schaffen.

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.