Göttingen scientists use BESSY II to decode basic mechanism underlying biochemical reactions

Structure of the sugar molecule bound by the enzyme transketolase immediately prior to its being split

Structure of the sugar molecule bound by the enzyme transketolase immediately prior to its being split

Enzymes are life’s molecular catalysts and figure prominently in cellular metabolism. It has been speculated that in the course of a biochemical reaction enzymes physically bend their substrates to split them. Now for the first time ever, scientists at the Göttingen Center for Molecular Biosciences (GZMB) have successfully used BESSY II's MX beamline to unequivocally confirm this hypothesis. The results from this study have been published in the renowned scientific journal Nature Chemistry.

The Göttingen team around Prof. Dr. Kai Tittmann and Prof. Dr. Ralf Ficner started out by growing high order protein crystals of the human enzyme transketolase, which plays a central role in human metabolism during sugar processing. Natural sugar substrates were added to the protein crystals. Analysis of the enzyme’s crystalline structure was subsequently performed at electron storage ring BESSY II's MX beamline and in French Grenoble. The scientists were able to determine the structure of the sugar molecule bound by the enzyme immediately prior to its being split in half at an ultrahigh spatial resolution of 0.1 nanometers. “The snapshot we got of an enzyme at work, which really is unprecedented in terms of resolution, unequivocally reveals how the sugar substrate is being bent by the enzyme, similar to a vise clamping a work piece,” Prof. Tittmann explains.

In many cases, enzymes are drug targets. Which is why these new insights are important for the development of customized, highly specific active substances like those used in cancer therapy. “Even the human transketolase used in this study plays a key role in cancer cell metabolism,” says Prof. Tittmann.

Source: Göttingen University

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • AI re-examines dinosaur footprints
    Science Highlight
    27.01.2026
    AI re-examines dinosaur footprints
    For decades, paleontologists have pondered over mysterious three-toed dinosaur footprints. Were they left by fierce carnivores, gentle plant-eaters, or even early birds? Now, an international team has used artificial intelligence to tackle the problem—creating a free app that readily lets anyone decipher the past.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University).