Weltrekord-Solarzelle mit 44,7 Prozent Wirkungsgrad

Weltrekordsolarzelle mit 44,7 Prozent Wirkungsgrad, bestehend aus vier Teilsolarzellen auf Basis von III-V Halbleitern, für die Anwendung in der Konzentrator-Photovoltaik. ©Fraunhofer ISE

Weltrekordsolarzelle mit 44,7 Prozent Wirkungsgrad, bestehend aus vier Teilsolarzellen auf Basis von III-V Halbleitern, für die Anwendung in der Konzentrator-Photovoltaik. ©Fraunhofer ISE

Mit einem Solarzellen-Wirkungsgrad von 44,7 Prozent erzielten Forscher um Dr. Frank Dimroth am Fraunhofer ISE in Freiburg einen neuen Weltrekord für die Umwandlung von Sonnenlicht in elektrischen Strom. Dabei handelt es sich um eine Mehrfachsolarzelle aus vier Teilsolarzellen, für die mit einem neuen Verfahren zwei Halbleiterkristalle miteinander verbunden wurden, außerdem setzten sie optische Komponenten ein, um das Sonnenlicht auf die Zelle zu konzentrieren (Konzentrator-Photovoltaik). Ein Teil der Struktur wurde am Helmholtz Zentrum Berlin (HZB) in der Arbeitsgruppe um Prof. Thomas Hannappel, heute TU Ilmenau, entwickelt. Die Gruppe hat sich dabei vor allem um die Präparation besonders kritischer Grenzflächen gekümmert. Insbesondere galt es, die Entstehung von unerwünschten Grenzflächendefekten zu vermeiden. Auch SOITEC und CEA-Leti haben zu diesem Erfolg beigetragen.

Der Weltrekordwert von 44,7 % wurde bei einer Konzentration von 297 Sonnen gemessen. Der Einsatz von Konzentrator-Photovoltaik könnte in sonnenreichen Regionen der Erde die Effizienz von PV-Solarkraftwerken verdoppeln.

Weitere Informationen:

www.ise.fraunhofer.de

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.