Starre Ordnung konkurriert mit Supraleitung

Streifenanordnung von Ladungstr&auml;gern in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8+x</sub> [2]. Die Abbildung zeigt die Struktur mit einer Periode von etwa einem Nanometer (vorn) und das zugeh&ouml;rige Beugungsbild (hinten) in Form einer sogenannten Fouriertransformation (Yazdani Lab, Princeton University).

Streifenanordnung von Ladungsträgern in Bi2Sr2CaCu2O8+x [2]. Die Abbildung zeigt die Struktur mit einer Periode von etwa einem Nanometer (vorn) und das zugehörige Beugungsbild (hinten) in Form einer sogenannten Fouriertransformation (Yazdani Lab, Princeton University).

Heute in Science Express: In Hochtemperatursupraleitern wie den Cupraten können die Ladungsträger sich zu winzigen „Nanostreifen“ anordnen, was die Supraleitung unterdrückt, zeigten Gastforscher aus Princeton und Vancouver an BESSY II

Supraleiter sind Materialien, die elektrischen Strom ohne Energieverlust leiten. Klassische Supraleiter müssen dafür jedoch bis fast zum absoluten Nullpunkt (minus 273 Grad Celsius) heruntergekühlt werden, und selbst die „Hochtemperatur-Supraleiter“ benötigen noch sehr tiefe Temperaturen von minus 200 Grad Celsius. Obwohl diese Kühlung aufwändig ist, werden Supraleiter bereits in vielen Bereichen eingesetzt, beispielsweise in der Medizin für die Magnetresonanztomographie. Materialien, die auch bei Raumtemperatur Strom verlustfrei leiten, gibt es trotz großer Anstrengungen noch immer nicht.

Hochtemperatursupraleiter sind seit 1986 bekannt, nur ein Jahr später erhielten ihre Entdecker den Nobelpreis. Hochtemperatursupraleitung findet man in der Materialklasse der Cuprate, komplexen Verbindungen aus Kupfer und Sauerstoff sowie weiteren Elementen. Doch trotz intensiver Forschung sind entscheidende Prozesse noch immer nicht verstanden. Denn in diesen Materialien hängen die Eigenschaften der Ladungsträger von vielen subtilen Details ab, und es gibt eine Reihe von Mechanismen, die sie daran hindern, den supraleitenden Zustand einzunehmen. So konkurrieren offenbar auch andere Materialzustände mit der Supraleitung.

Einer dieser Zustände ist die regelmäßige Anordnung der Ladungsträger in streifenförmigen Strukturen auf der Nanoskala. Diese Anordnung macht die Ladungsträger unbeweglich und unterdrückt so die Supraleitung. Bereits im vorigen Jahr konnten Gastforscher mit Hilfe von Experimenten an BESSY II zeigen, dass dieser Mechanismus in einer relevanten Gruppe von Cupraten auftritt und die Supraleitung verhindert [1]. Unter der Führung von zwei Forschergruppen aus Vancouver und Princeton haben internationale Teams diese sogenannte Ladungsordnung nun auch in weiteren Cupraten gefunden und als eine grundlegende Eigenschaft dieser Materialien identifiziert.

Sie nutzten dafür das am HZB entwickelte XUV-Diffraktometer an der UE46_PGM1-Beamline an BESSY II. Mit Synchrotronstrahlung im weichen Röntgenbereich gelang es ihnen, diese schwer nachweisbaren Nanostrukturen in der Ladungsanordnung mit hoher Präzision zu messen und damit wesentlich zum Verständnis dieses Phänomens beizutragen. Dabei arbeiteten sie eng mit Wissenschaftlern der Abteilung Quantenphänomene in neuen Materialien (vormals am Institut Komplexe Magnetische Materialien) am HZB zusammen. Die Ergebnisse wurden jetzt in zwei Artikeln im Fachjournal Science publiziert [2,3]. „Mit der Identifizierung und dem Verständnis der Konkurrenzprozesse zur Supraleitung verbindet sich die Hoffnung, die konkurrierenden Wechselwirkungen gezielt ausschalten zu können und auf diese Weise Supraleitung bei Raumtemperatur zu ermöglichen“, erklärt Dr. Eugen Weschke, der die Messungen an BESSY II betreut hat.


[1] G. Ghiringelli et al., Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x, Science 337, 821 (2012).
[2] Eduardo H. da Silva Neto et al., Ubiquitous Interplay between Charge Ordering and High-Temperature Superconductivity in Cuprates, Science 2013. DOI: 10.1126/science.1243479


[3] R. Comin et al., Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ, Science (2013). DOI: 10.1126/science.1242996

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.