Licht-induzierte Alterung von Dünnschicht-Solarzellen aus amorphem Silizium

Im Ausgangszustand (links) sind die internen Oberfl&auml;chen der Hohlr&auml;ume mit Wasserstoffatomen abges&auml;ttigt, so dass keine Defekte existieren. Licht erzeugt Ladungstr&auml;ger (h<sup>+</sup>), die die atomaren Bindungen destabilisieren. Das Aufbrechen von atomaren Bindungen erzeugt Defekte (vertikale Pfeile, rechts), die den Wirkungsgrad von Solarzellen verringern.

Im Ausgangszustand (links) sind die internen Oberflächen der Hohlräume mit Wasserstoffatomen abgesättigt, so dass keine Defekte existieren. Licht erzeugt Ladungsträger (h+), die die atomaren Bindungen destabilisieren. Das Aufbrechen von atomaren Bindungen erzeugt Defekte (vertikale Pfeile, rechts), die den Wirkungsgrad von Solarzellen verringern. © HZB

Forscher am Helmholtz-Zentrum Berlin (HZB) gelang ein entscheidender Schritt, um einem seit 40 Jahren unverstandenen störenden Effekt in Dünnschicht-Solarzellen aus amorphem Silizium auf die Spur zu kommen. Demnach tragen winzige Hohlräume im Silizium maßgeblich dazu bei, dass sich die Effizienz der Solarzellen zu Beginn der Nutzung um etwa 10 bis 15 Prozent verschlechtert.  Die Arbeit ist jetzt in der Zeitschrift „Physical Review Letters“ veröffentlicht worden (DOI: 10.1103/PhysRevLett.112.066403).

Dünnschicht-Solarzellen aus amorphem Silizium gelten als aussichtsreichste Alternative zu den bisher bei der Stromerzeugung aus Sonnenlicht dominierenden Zellen auf der Basis hochreiner Silizium-Wafer. Ein Vorteil der amorphen Silizium-Dünnschicht-Photovoltaik, bei der das lichtaktive Material in einer weniger als ein tausendstel Millimeter dünnen Schicht auf ein Glassubstrat aufgetragen wird: Die Herstellung der Zellen ist wesentlich einfacher und kostengünstiger als bei konventionellen kristallinen Silizium-Solarzellen. Von Nachteil ist hingegen der niedrigere Wirkungsgrad bei der Umwandlung von Sonnenenergie in elektrischen Strom. Bedingt durch die Unordnung im amorphen Silizium, leiden die Solarzellen unter dem sogenannten Staebler-Wronski-Effekt. Er bewirkt, dass das Sonnenlicht die Effizienz der Zellen in den ersten 1000 Stunden bis zu 15 Prozent schwinden lässt.

Auslöser für diesen unerwünschten Effekt ist die interne Vernichtung – die Physiker sprechen von Rekombination – von nicht abgeflossener Ladung. Die dabei freiwerdende Energie bildet Defekte im amorphen Netzwerk. Einen vergleichbaren Effekt gibt es in kristallinen Wafer-Solarzellen daher nicht. „Wo die Defekte im Material genau erzeugt werden und ob Nano-Hohlräume hierbei eine Rolle spielen, war bislang jedoch ungeklärt“,  sagt Matthias Fehr vom Institut für Silizium-Photovoltaik des Helmholtz-Zentrums Berlin. Gemeinsam mit Institutskollegen sowie Wissenschaftlern des Forschungszentrums Jülich und der Freien Universität Berlin gelang es ihm nun, der Lösung dieses Rätsels einen bedeutenden Schritt näher zu kommen.

Da die entstehenden Defekte paramagnetische Eigenschaften haben, hinterlassen sie einen charakteristischen magnetischen Fingerabdruck – abhängig von der mikroskopischen Umgebung. Die Berliner Forscher konnten ihn mithilfe von Elektronen-Paramagnetischer-Resonanz (EPR) -Spektroskopie und Elektronen-Spin-Echo (ESE)-Experimenten identifizieren. Mit diesen sehr empfindlichen Methoden gelang es ihnen nachzuweisen, dass Defekte im amorphem Silizium in zwei Gruppen vorkommen: zum einen gleichmäßig verteilt und zum anderen angehäuft an Oberflächen von winzigen Hohlräumen – im Fachjargon: Microvoids. Diese bilden sich während der Herstellung der Solarzellen in dem Werkstoff. „Wir vermuten, dass sich Cluster aus mehreren Defekten an den Innenwänden dieser Hohlräume anlagern, die nur rund ein bis zwei Nanometer Durchmesser haben“, erklärt HZB-Physiker Fehr.

„Unsere Ergebnisse legen nahe, dass Microvoids höchstwahrscheinlich zur lichtinduzierten Degradation von Dünnschicht-Solarzellen aus amorphem Silizium beitragen“, resümiert Fehr, der 2013 als Feodor Lynen-Stipendiat der Alexander von Humboldt-Stiftung ein Auslandsjahr in den USA verbrachte. „Damit sind wir der mikroskopischen Ursache der lichtinduzierten Degradation wesentlich näher gekommen.“ In neuen Experimenten wollen die Berliner Forscher nun weitere Details der atomaren und elektronischen Vorgänge bei dem nach seinen beiden Entdeckern benannten Staebler-Wronski-Effekt enthüllen.

Die Arbeit erfolgte innerhalb des vom Bundesministerium für Bildung und Forschung geförderten Netzwerks „EPR-Solar“ sowie des Berlin Joint EPR Labs des HZB und der FUB. „Sie ist zugleich eines der großen Projekte einer neuen Forschungsabteilung am HZB, die sich derzeit in Gründung befindet und deren Ziel eine fundamentale physikalische Charakterisierung von Energiematerialien ist und so entscheidend zur Energiewende beiträgt“ berichtet Projektleiter Prof. Dr. Klaus Lips.

Referenzen:
[1] Fehr, M., Schnegg, A., Rech, B., Astakhov, O., Finger, F., Bittl, R., Teutloff, C., Lips, K. (2014) Metastable defect formation at microvoids identified as a source of light-induced degradation in a-Si:H. Phys. Rev. Lett. (accepted)

Autor: Ralf Butscher

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.