Ein neues Cluster-Tool für EMIL

Ein Cluster-Tool zur Erforschung neuer Materialien und  Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen. (Bildquelle: Altatech)

Ein Cluster-Tool zur Erforschung neuer Materialien und  Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen. (Bildquelle: Altatech)

Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) und Altatech, ein Unternehmen der Soitec-Gruppe, haben eine Kooperation vereinbart, um neue Materialien für die nächste Generation von hocheffizienten Solarenergiewandlern zu erforschen und zu entwickeln. Dazu gehören insbesondere neue Materialien und innovative Bauteilstrukturen für Photovoltaik- und Photokatalyse-Anwendungen.

Im Rahmen der gemeinsamen Forschungsarbeiten wird Altatech ein speziell angepasstes Silizium-Depositionsclustertool auf Basis seiner sogenannten AltaCVD-Plattform im „Energy Materials In-situ Laboratory (EMIL)” des HZB installieren. Dort – direkt am Berliner Elektronen-Synchrotron BESSY des HZB – wollen das Helmholtz-Zentrum und Altatech gemeinsam neue Materialabscheidungsprozesse, funktionelle Grenzflächen und Bauteile für die Solarenergieumwandlung und -speicherung entwickeln.

Altatechs AltaCVD-System wird in EMIL zum Einsatz kommen, um unter anderem verschiedene Morphologien und Legierungen von Silizium, sowie transparente, leitende Oxide und ultradünne Dielektrika abzuscheiden. Diese Stoffklassen werden bei der Herstellung der nächsten Generation von Solarenergie-Baugruppen eine wichtige Rolle spielen. Das Clustersystem soll im EMIL-Gebäude installiert und dort direkt mit einer Röntgenanalyse-Messstation verbunden werden, die von einer BESSY II-Beamline mit hochbrilliantem Röntgenlicht versorgt wird.

HZB und Altatech wollen im Cluster-Tool Depositionstechniken auf Basis von Atomlagen-Abscheidung, Plasma-unterstützter chemischer Gasphasenabscheidung sowie Kathodenzerstäubung auf Substrate anwenden, die in der Größe von kleinsten Proben bis hin zu industriekompatiblen 6-Inch-Wafern reichen. EMILs weltweit einmalige Analysetechniken sollen dann genutzt werden, um Material- und Baugruppeneigenschaften direkt während bzw. zwischen verschiedenen Schritten des Herstellungsprozesses zu analysieren.

„Mit EMIL wollen wir Materialien für neue Hocheffizienz-Photovoltaikzellen und für katalytische Prozesse erforschen, die für zukünftige Solarenergieumwandlungs- und -speicherkonzepte erforderlich sind“, sagt Prof. Dr. Klaus Lips, EMIL-Projektleiter und Chef der „Advanced Analytics“-Gruppe am HZB: „Wir werden diese Materialien mit Methoden der Grundlagenforschung entwickeln und charakterisieren, diese jedoch mit industrietauglichen Verfahren herstellen, um anschließend eine schnelle industrielle Umsetzung möglich zu machen. Das AltaCVD-System ermöglicht es, sehr flexible Präparationsbedingungen mit einer vollständig industriekompatiblen Abscheidungstechnologie zu realisieren. Das gilt für Temperaturen, Prekursoren oder in-situ plasmachemische Reinigung.”

„Diese Kooperation verstärkt die technologische Führungsrolle des AltaCVD-Systems im Bereich Abscheidungstechniken für Hochtechnologie-Materialien“, sagt Jean-Luc Delcarri, Generalmanager von Soitecs Altatech-Gruppe: „Unsere Zusammenarbeit mit dem HZB ermöglicht es uns, diese Technologie an einem führenden Synchrotron einzusetzen. Gemeinsam mit dem HZB werden wir die Tür öffnen zu neuen Möglichkeiten in der Erforschung von Energiematerialien. So können wir einen Beitrag leisten, dass Wissenschaftler die Herausforderungen der zukünftigen weltweiten Energieversorgung angehen können.“

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.